Particle-in-Cell Simulations on Collisionless Shocks and Particle Acceleration in Black Hole Coronae
- Date
- October 16 (Thu) 14:00 - 15:15, 2025 (JST)
- Speaker
-
- Nhat-Minh Ly (Ph.D. Student, Department of Physics, Osaka University)
- Language
- English
- Host
- Shigehiro Nagataki
Multiple nearby Active Galactic Nuclei have been reported as sources of high-energy neutrinos detected by the IceCube observatory. These results strongly suggest efficient proton acceleration to (sub-)PeV energies, likely within Black Hole (BH) coronae, given the lack of γ-ray counterparts. The acceleration mechanisms remain unconfirmed due to limited understanding of coronal environments and challenges in modeling hot, relativistic plasmas. Although diffusive shock acceleration (DSA) has been proposed, a self-consistent treatment incorporating detailed kinetic plasma effects has been lacking. In this study, we present the particle-in-cell (PIC) method as a first-principles approach to investigate particle acceleration by collisionless shocks under conditions inferred from multi-wavelength observations of BH coronae. Using large-scale 1D3V simulations, we surveyed shock parameters, focusing on underexplored effects such as initial ion–electron temperature ratios and trans-relativistic shock velocities, and found that collisionless shocks can form even in hot, low-Mach plasmas. These shocks accelerate protons up to ~100 TeV, consistent with the energies required for IceCube neutrino detections, across a wide range of coronal conditions. The shocks partition ~10% of dissipated energy into nonthermal protons and <1% into electrons, providing critical, observationally testable constraints on the plasma state of BH coronae.
This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.