Date
October 16 (Thu) 14:00 - 15:15, 2025 (JST)
Speaker
  • Nhat-Minh Ly (Ph.D. Student, Department of Physics, Osaka University)
Language
English
Host
Shigehiro Nagataki

Multiple nearby Active Galactic Nuclei have been reported as sources of high-energy neutrinos detected by the IceCube observatory. These results strongly suggest efficient proton acceleration to (sub-)PeV energies, likely within Black Hole (BH) coronae, given the lack of γ-ray counterparts. The acceleration mechanisms remain unconfirmed due to limited understanding of coronal environments and challenges in modeling hot, relativistic plasmas. Although diffusive shock acceleration (DSA) has been proposed, a self-consistent treatment incorporating detailed kinetic plasma effects has been lacking. In this study, we present the particle-in-cell (PIC) method as a first-principles approach to investigate particle acceleration by collisionless shocks under conditions inferred from multi-wavelength observations of BH coronae. Using large-scale 1D3V simulations, we surveyed shock parameters, focusing on underexplored effects such as initial ion–electron temperature ratios and trans-relativistic shock velocities, and found that collisionless shocks can form even in hot, low-Mach plasmas. These shocks accelerate protons up to ~100 TeV, consistent with the energies required for IceCube neutrino detections, across a wide range of coronal conditions. The shocks partition ~10% of dissipated energy into nonthermal protons and <1% into electrons, providing critical, observationally testable constraints on the plasma state of BH coronae.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event