February 25 at 16:20 - 17:20, 2019 (JST)
Prof. Hidehiko Mishou (Tokyo Denki University) Edit

In 1975, Voronin established the universality theorem for the Riemann zeta function. Roughly speaking this theorem asserts that any holomorphic function on 1/2<Re(s)<1 can be uniformly approximated by a suitable vertical translation of the Riemann zeta function. In this talk, we state that the joint universality theorem for a set of Dirichlet L-functions associated with real primitive characters holds as we move the modulus of characters. As a corollary of this result, we also establish a joint denseness result for a set of class numbers of imaginary quadratic fields. This is a joint work with Hirofumi Nagoshi (Gunma University).