May 14 at 16:00 - 18:10, 2021 (JST)
Dr. Eiji Inoue (Special Postdoctoral Researcher, iTHEMS) Edit
via Zoom

The aim of this talk is to report recent trends in Kähler geometry. Kähler geometry consists of two aspects: the one is algebraic geometry and the other is metric geometry.The first one hour is an introduction for non-mathematicians.
I begin with a simple example of algebraic variety from ancient Greek, which I believe is the simplest example illustrating motivation for compact complex manifolds.
On the other hand, I explain the first motivation for canonical metrics in Kähler geometry via Riemann’s uniformization theorem.The last one hour is an introduction to recent trends in Kähler geometry, especially Kähler-Einstein metrics.
The existence of Kähler-Einstein metrics turns out to be related to geometry of degenerations of space, which is so called Yau-Tian-Donaldson conjecture.
I explain various aspects of this topic. We encounter deep studies in metric geometry, birational geometry and non-archimedean geometry.
I finally explain recent breakthrough on Kähler-Ricci flow.The goal of this talk is the starting point of my study. I briefly explain my study if time permits.

*Please contact Keita Mikami's mail address to get access to the Zoom meeting room.