A one-world interpretation of quantum mechanics
- Date
- January 16 (Fri) 14:00 - 16:00, 2026 (JST)
- Speaker
-
- Isaac Layton (Postdoctoral Researcher, Department of Physics, Graduate School of Science, The University of Tokyo)
- Venue
- Language
- English
- Host
- Amaury Micheli
The measurement problem arises in trying to explain how the objective classical world emerges from a quantum one. In this talk I’ll advocate for an alternative approach, in which the existence of a classical system is assumed a priori. By asking that the standard rules of probability theory apply to it when it interacts with a system linearly evolving in Hilbert space, I’ll show that with a few additional assumptions one can recover the unitary dynamics, collapse and Born rule postulates
from quantum theory. This gives an interpretation of quantum mechanics in which classically definite outcomes are always assigned probabilities, rather than superpositions, giving one-world instead of many. The main technical tool used is a change of measure on the space of classical paths, the functional form of which characterises the quantum dynamics and Born rules of a class of quantum-like theories. Time allowing, I will also discuss how these results clarify which additional assumptions must be accepted if one wishes to seriously consider classical alternatives to quantum gravity.
This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.