Seminar Report
362 news

20210730
Seminar ReportiTHEMS Biology Seminar by Prof. Mayumi Seto on July 29, 2021
On July 29th, Mayumi Seto (Nara Women's University) gave a talk on the application of thermodynamics to microbial modeling. She first introduced some important concepts of adenosine triphosphate (ATP), its synthesis in biology, and chmotrophic interactions between microorganisms. She then moved on to mathematical models explicitly incorporating energy flows in the microbial interactions. She finally gave implications from her work for future and ongoing studies, and after the talk we casually discussed her exciting projects. For me, she was the person whom I met on the very first visitation at Kyushu University in 2009 when I was, as an undergrad student at another university, yet unsure to start my Ph.D. at Kyushu University or not, and I'm sure her kind and encouraging guidance was one of the decisive factors for me being here as a researcher. Thanks again for the fantastic talk, Mayumi! Reported by Ryosuke Iritani

20210712
Seminar ReportiTHEMS Colloquium by Prof. Shingo Iwami on July 8, 2021
In his presentation for the iTHEMS Colloquium, Prof. Shingo Iwami discussed the foundational approach of his research: using a mathematical modelbased approach to link experimental data from everimproving experimental measurement technology in order to tackle problems in Biology, particularly in hematology, infectious diseases, cancer, etc. He illustrated his research approach through several examples that ranged from HIV, Hepatitis C virus, and the new SARS corona virus (SARSCoV2). He highlighted some of the key challenges that are faced when trying to extract specific information from limited data, and how properly calibrated models can be used to simulate experiments that cannot be performed. He also talked about his plans for the future, and introduced the research team he newly formed at Nagoya University, the interdisciplinary Biology Laboratory or iBLab. Reported by Catherine Beauchemin

20210707
Seminar ReportiTHEMS Theoretical Physics Seminar by Dr. Myungo Shim on July 5, 2021
On July 5, Myungo Shim from Kyung Hee University, Korea, gave the iTHEMSphysics seminar on a correspondence between threedimensional gauge theories. He proposed a novel procedure of assigning a pair of nonunitary topological quantum field theories (TQFTs), TFT$_\pm [T_0]$, to a (2+1)D interacting $N=4$ superconformal field theory (SCFT) $T_0$ of rank $0$, i.e. having no Coulomb and Higgs branches. The topological theories arise from particular degenerate limits of the SCFT. Modular data of the nonunitary TQFTs are extracted from the supersymmetric partition functions in the degenerate limits. As a nontrivial dictionary, he proposed that $F = {\rm max}\{  \log S^{(+)}_{0\alpha} \} = {\rm max}\{ \log S^{()}_{0\alpha}\}$, where $F$ is the round threesphere free energy of $T_0$ and $S^{(\pm)}_{0\alpha}$ is the first column in the modular Smatrix of TFT$_\pm$. From the dictionary, he derived the lower bound on $F$, $F \geq \log \left(\sqrt{\frac{5\sqrt{5}}{10}} \right) \simeq 0.642965$, which holds for any rank $0$ SCFT. The bound is saturated by the minimal $N=4$ SCFT proposed by GangYamazaki, whose associated topological theories are both the LeeYang TQFT. Before going to the technical part, he also provided some background materials including some peculiar features in 3d gauge theories, some supersymmetries, anyons, and some modular data of MTC in the talk. Reported by Toshihiro Ota

20210706
Seminar ReportiTHEMS Math Seminar by Mr. Mizuki Oikawa on July 2, 2021
On July 2 Mizuki Oikawa gave a talk at the iTHEMS math seminar. He talked about the interaction among modular functions, conformal field theories and moonshine phenomena. Below is a recap of his talk. The jinvariant is an example of modular form. Its coefficients in the qexpansion is closely related to a certain sporadic simple group (the monster group), and the relation can be understood via the theory of vertex operator algebras (VOA), which is a mathematical model of conformal field theory (CFT). This gives an example of moonshine phenomena. On the other hand, there is another mathematical framework for CFT, called the conformal net, which depends on the theory of von Neumann algebras. CarpiKawahigashiLongoWeiner gave a correspondence between a certain class of VOAs (which includes the monstrous moonshine VOA) and that of conformal nets. Recently, Tener gave a geometric realization of some VOAs and the corresponding conformal nets via Segal CFT. The talk was highly stimulating, and the audience asked many questions that arise from both mathematical and physical sides. Reported by Michiya Mori

20210706
Seminar ReportiTHEMS Biology Seminar by Prof. Takahiro Sakaue on July 1, 2021
On July 1st, Prof. Takahiro Sakaue (Aoyama Gakuin University) gave us a talk about chromatin dynamics in C. elegans embryos. He first introduced important factors for gene expression such as phase separation, topological constraints, and chromatin dynamics. After explaining how to see the chromatin dynamics under the microscope, he showed us interesting experimental results about the dependence of MSD on the nucleus radius. By considering polymer models, he showed that two kinds of typical length/time scales appear and discussed how the type of anomalous diffusion of chromatin is determined depending on the time/length scale. Moreover, he theoretically explained the observed nucleussize dependence of MSD. We are grateful to Sakauesan for the exciting talk! Reported by Kyosuke Adachi

20210701
Seminar ReportiTHEMS Theoretical Physics Seminar by Dr. Yuki Fujimoto on June 29, 2021
On June 29th, Yuki Fujimoto (The University of Tokyo) gave the iTHEMSphysics seminar on the equation of state (EoS) in the dense baryonic matter. The EoS of dense baryonic/quark matter is the crucial ingredient for understanding neutron stars. He nicely reviewed the current state of the highdensity matter EoS based on the QCD perspectives. His recent work on the EoS calculated within the pQCD framework with the resummation [Fujimoto & Fukushima, 2011.10891] gives the Hard Dense Loop resummation formula which turns out to reduce the uncertainty compared with the conventional pQCD estimate without resummation. His approach extends the applicability of the QCDbased EoS down to densities realized inside neutron stars and infers a smooth matching with the baryonic EoS. The audience asked a lot of questions and had fruitful discussions. Reported by Etsuko Itou

20210629
Seminar ReportiTHEMS Theoretical Physics Seminar by Dr. Kanato Goto on June 21, 2021
On June 21st, Kanato Goto (RIKEN iTHEMS) gave the iTHEMSphysics seminar on the black hole information paradox. Recently, there is a proposal for the formula for a quantum black hole entropy, called the island formula, which is expected to reconcile the conflict between the thermal and quantum natures of the black hole. One may regard the island formula as a generalization of the socalled RyuTakayanagi formula for the entanglement entropy, but its derivation is yet to be clarified. In the talk, after reviewing the current status of the black hole information paradox, Kanato explained their work on a derivation of the island formula based on the replica method for the gravitational path integral. The audience asked a lot of questions and we really enjoyed the talk. Reported by Masaru Hongo

20210628
Seminar ReportDMWG Seminar by Dr. Satoshi Shirai on June 24, 2021
We are now living in the era of precision cosmology. The relic abundance of dark matter (DM) is now observationally welldetermined, and its error is smaller than O(1)%. This means that the same or much higher precision is required when we make theoretical predictions. Weakly Interacting Massive Particle (WIMP) has long been the leading candidate for DM because of its beautiful mechanism to predict the observed relic abundance. WIMP is in the same thermal bath as the Standard Model particles in the beginning. At a certain point when the temperature of the Universe is smaller than the DM mass, it decouples to fix its number density. The yield of the DM is determined by its annihilation crosssection to the Standard Model sector. It seems that there is no ambiguity in the calculation of this process at first: the crosssection is purely theoretical and all the remainings are described in the Standard Model physics. However, the source of the uncertainty does remain in the Standard Model sector. The dilution of the number density of DM particle depends on the expansion rate of the Universe, which is determined by the Standard Model particles. The effective degree of freedom (d.o.f) of the relativistic species controls this factor. We have to deal with the nonequilibrium dynamics to precisely describe the timeevolution of the d.o.f, in which we need numerical approaches. In this talk, he introduced his work to update these calculations. By implementing the latest findings in the nonequilibrium dynamics in i) the neutrino decoupling, ii) the QCD phase transition, iii) the electroweak phase transition, and iv) the perturbative calculations, they found that the final d.o.f is smaller than the previous estimate in more than 1%. This is larger than the level of precision in observations. It is also important that the uncertainty is quantified by them. Another good news is that he makes the calculated d.o.f with its error publically available. With these updates, we now correctly know the points to probe DM! Reported by Nagisa Hiroshima

20210628
Seminar ReportMath Seminar by Dr. Kazuki Kannaka on June 18, 2021
There was a math seminar by Kazuki Kannaka on June 18. He gave an introductory talk on his research fields, representation theory and briefly explained his study. He first explained some basic definitions in representation theory. He then explained the mathematical tiling problem with the Lie group. In the second part, he explained how the distribution of the compact pseudoRiemannian manifolds differs for parameters. He also introduced his example, which has a continuous spectrum. Reported by Keita Mikami

20210625
Seminar ReportInformation Theory SG Seminar by Prof. Yoshiyuki Kabashima on June 23, 2021
With great honor, we have invited Prof. Yoshiyuki Kabashima to our information theory seminar to give a stimulating talk about “introduction to the replica method” on 23rd June. Replica method is a physicsbased technique developed for analyzing disordered manybody problems, which is now becoming popular more in information science using the structural similarity between problems from these two different fields. Prof. Yoshiyuki Kabashima is a master of the replica method. He applied this method to many problems in information theory, such as CDMA, compressed sensing, clustering of networks, error correcting codes, etc. The talk contains two parts. In the first part, as an example of the concept, he explained the mathematical similarity of three problems whose origins are unrelated with one anotherrandom energy model (Physics), error correcting codes (information theory) and random kSAT problem (theoretical computer science). A unified perspective is the common structure of the three examples is the conditional distribution, and the key to solve the problems is the assessment of the average free energy. The replica method provides a systematic way to performing the configurational average. Even the mathematical justification is still an open problem, there is no known example to which the replica method leads to wrong results by appropriately taking into account the replica symmetry breaking if necessary. In the second part, Prof. Yoshiyuki Kabashima demonstrated the calculation of replica method using an example of random energy model of spin glass. This simple model has an exact solution without using the replica method. One can see how replica method can provide the correct solution by taking care of the assumptions of replica symmetry and 1step replica symmetric breaking (1RSB) in different temperature ranges. In the end, he gave an expert perspective of large deviation statistics of replica method and 1RSB solution. Many excellent questions and stimulating discussions have happened during the 2.5hour seminar. We absorbed by the world of “replicas”. We thank to Prof. Yoshiyuki Kabashima for giving us this great opportunity and hope new ideas of applications of the replica method appear in iTHEMS. Report by Yingying Xu

20210625
Seminar ReportiTHEMS Biology Seminar by Dr. Jeffrey Fawcett on June 10, 2021
On 10 June 2021, our iTHEMS member Jeffrey Fawcett gave a talk about “the origin and dispersal of buckwheat” at the Biology Seminar. Jeffery works on or has worked on a broad range of topics related to genomics, evolution, genetics, bioinformatics, and systems biology. This time, he talked about his recent worldwide collaboration work using genomic data of wild samples from China (around Yunnan, Sichuan, and Tibet) and cultivated samples from various parts of the world to understand “when”, “where”, and “how” buckwheat originated and then spread across the world and came to Japan. He explained the significance of studying "domestication", which can contribute to research on evolution, molecular breeding and implications for human history. Buckwheat, which soba noodles is made from, is now such a familiar everyday life related plant in Japan. We are surprised how such a genomic approach about soba revealed the history of ancient world and Japan and gave us a hint about the origin of Japanese people. We are looking forward to further discovery of this interesting research topic. Report by Yingying Xu

20210625
Seminar ReportiTHEMS Biology Seminar by Prof. Fumito Mori on June 24, 2021
In iTHEMS biology seminar on June 24, Fumito Mori (Assistant Professor, Faculty of Design, Kyushu University) gave us a talk on synchronization and variability of the periodicity. In the seminar, he introduced minimal models of coupled oscillators to discuss synchronization. Interestingly, the variability of the periodicity, in general, depends on which variables (or genes) we consider and on which timepoints we (or cells) measure the periodicity. He demonstrated this subtlety in the socalled repressilator system. He then discussed how noise and interaction parameters can be inferred from given data of periodicity. In the talk, he showed us many general results, which were very impressive to us. Finally, I am grateful to Morisan because I asked him to do the seminar just two weeks before it, but he kindly accepted. Thank you very much for the fantastic talk, Morisan! Reported by Takashi Okada

20210607
Seminar ReportiTHEMS Biology Seminar by Dr. Yingying Xu on June 3, 2021
On June 3rd, Yingying Xu who recently joined iTHEMS gave a talk at the Biology Seminar. She spoke about her past research on applying ideas from statistical physics to genetics, especially on what is called "epistasis". Statistics plays a crucial role in the study of genetics, and one of the main challenges now is to understand the combined effect of multiple mutations, which is often referred to as epistasis. This clearly requires input from statistical physics, so I was very excited to hear the progress made with people from statistical physics  Yingying and her colleagues being involved. Her talk was also very helpful for everyone to get an idea of how advanced statistics/mathematics is being applied to genetics. It was also great to see the expertise of Yingying, and we will be looking forward to further interaction with her. Reported by Jeffrey Fawcett

20210531
Seminar ReportQuantum Matter SG seminar by Dr. RuiXing Zhang on May 26, 2021
On May 26th, Dr. RuiXing Zhang from the University of Maryland gave a talk about the classification of anomalous floquet higherorder topological insulators. He started with a pedagogical introduction to floquet topological insulators, which possess robust boundary states. Notably, there are two types of nontrivial floquet topology. 1. The floquet bands inherit the topology of the static bands. 2. The nontrivial physics of the anomalous floquet topological insulators stems from dynamical phase bands. Dr. Zhang extended the idea of the second type to higherorder topological insulators, which have robust corner states or edge ones. Dr. Zhang specifically discussed the anomalous floquet topology for chiral symmetric systems preserving C2 rotation symmetry. Using this example, he generalized the classification of the topological phases to various point groups. We thank Dr. Zhang for giving this wonderful talk. Reported by ChingKai Chiu

20210527
Seminar ReportiTHEMS Biology Seminar by Dr. Kouki Uchinomiya on May 27, 2021
On May 27 (JST), we had online talk by Dr. Kouki Uchinomiya at iTHEMS Biology Seminar. He was one of active members of RIKEN iTHES, and currently he is at Central Research Institute of Electric Power Industry in Tokyo. This time, Kouki talked about radiation and cancer risk. Radiation can cause DNA damage for which it can cause cancer in our body. In the field of radiation and cancer, there has been a mystery that cancer risk decreases as the dose rate of radiation (Gy/h) decreases while the total dose of radiation fixed. By incorporating the competition between the normal and the damaged cells by radiation into a simple mathematical model, he successfully explained the mysterious phenomena. His model revealed that the key parameters including a relative reproductive ability of the damaged cells determine the cancer risk. According to him, those parameters will be experimentally measured in the near future, and we understand that the model should contribute to the quantitative estimation of cancer risk by radiation. During and after the talk, there were stimulating discussions as for the philosophy behind his very simple model and a possible extension to the model with the effect of immune system. We enjoyed his concise talk very much. Thanks Kouki! Reported by Gen Kurosawa

20210527
Seminar ReportMath Seminar by Dr. Michiya Mori on May 24, 2021
On May 24, there was an iTHEMS math seminar by Dr. Michiya Mori. In the first part, he explained his research on Lowebner theorems. He first described the notion of abstract order. He then introduced an order on the space of the hermitian matrix. He explained Molnar's results that the orderpreserving map must be affine on a particular good subset of matrices. Lastly, he explained his results with his collaborator that a map on matrix domain is an order isomorphism if and only if it has a good extension to the upper halfspace. In the second part, the speaker introduced the projective Hilbert space, the space of all quantum states, and FubiniStudy metric, an "argument" on the projective Hilbert space. He then introduced the result by Wigner that any bijective maps preserving FubiniStudy metric are unitary or antiunitary. The speaker introduced Uhlhorn's variant of this result: if the dimension of the space is larger than three, any bijection preserving argument π/2 is unitary or antiunitary. The speaker also explained that Gehér extended Uhlhorn's works for other cases, but there was one open case. The speaker explained his result with Gehér that the variant of the result by Uhlhorn holds for this last case. Reported by Keita Mikami

20210524
Seminar ReportJournal Club of Information Theory SG by Dr. Kyosuke Adachi on May 19, 2021
On May 19, Dr. Kyosuke Adachi talked about “Amino acid sequence and protein phase separation” at the journal club of information theory study group. First, he introduced the history of protein states, from its structure observed with Xray to intrinsically disordered region (IDR) and liquidliquid phase separation. In this talk, the speaker focused on IDR and phase separations. Second, he explained some biological functions of phase separation, such as compartmentalization of specific molecules, facilitation of biochemical reaction, and stress response. And the talk moved a question of what kind of sequence feature determines phase properties. Mainly, the speaker discussed coarsegrained models, which are expected to determine phase properties. Finally, he mentioned the problem of how to classifying IDRs and the importance of the coarsegrained sequence. Thank you, Adachisan, for the interesting talk! Reported by Yukimi Goto

20210520
Seminar ReportMath Seminar by Dr. Iyan Mulia on April 22, 2021
On April 22, the iTHEMS Math seminar was held (Sorry for the delay of the report!). This time, we invited Dr. Iyan Mulia from RIKEN Cluster for Pioneering Research, Prediction Science Laboratory. The title of the talk was “Alternative tsunami observing and forecasting systems”. The main topic of the talk was his work about how to catch and predict tsunami. First, he proposed new approaches to construct tsunami observing systems. There exist various observing systems already, but they share a big problem that they are very expensive. Since observing systems need to be updated regularly, it is very important to reduce the cost. Iyan’s proposal is to make use of existing commercial vessels and airplanes. Since they already exist and form a dense network all over the world, it will suffice to let them observe the sea level altitude and transfer the information. Iyan and his collaborators already demonstrated in experiments that the proposed observing system is accurate enough to detect large tsunamis. Next, he moved to another topic. Once we observe the occurrence of tsunami, next step is to predict its impact in the areas near the coast. While there are conventional mathematical models which provide very accurate prediction, it needs relatively long time for calculation. This is a nonignorable defect because it means the delay of the warning to residents. If we use linear models instead of the accurate model, the calculation becomes much faster but the accuracy of the prediction gets low. Iyan’s proposal is plug in the Machine Learning techniques to bridge these two models. He trained neural networks to predict the results of the accurate model from the results of the linear model. This method actually gives a satisfactory result: the prediction is very accurate and fast. If this method is accepted widely, it will be possible to predict the effect of tsunami very accurately in very short time. Reported by Hiroyasu Miyazaki

20210514
Seminar ReportiTHEMS Biology Seminar by Prof. Yuji Sakai on May 14, 2021
In iTHEMS Biology Seminar on May 14th, Prof. Yuji Sakai (Univ. of Tokyo) talked about the theoretical model of the autophagosome. First, he explained the autophagosome formation process, where the disklike and cuplike shapes of the membrane are observed. Then, he talked about the previous theories, where the spontaneous curvature is not considered. Next, he explained his theoretical model, in which the spontaneous curvature is induced and stabilized by the “curvature generator”. By minimizing the free energy in his model, he quantitatively reproduced the autophagosome formation via the disk and the cup. Finally, he mentioned the candidate of the curvature generator. His attractive talk induced various discussions and questions from the audience. Thank you very much for nice talk, Yuji! Reported by Hiroshi Yokota

20210514
Seminar ReportQuantum Matter Seminar by Prof. Christopher Bourne on May 12, 2021
Quantum Matter Study Group invited Prof. Christopher Bourne to give a talk on aperiodic and amorphous topological phases on May 12th, 2021. In the beginning, he reviewed topological phases in lattice systems and introduced integer Chern numbers. To generalize the topological phases, we extend the lattice to Delone sets, including quasicrystal and amorphous solid. The main talk focused on the topological phases for those types of solid. He provided examples to show the amorphous patterns exhibit gapped phases. He showed that the invariants can be defined as noncommutative Chern number and computed the nonzero Chern number in the gapped phase. It is interesting to see that quasicrystal and amorphous solid share similar integer Chern numbers, and the idea can be further extended to different spatial dimensions with symmetries. We thank Prof. Bourne for giving a wonderful talk. Reported by ChingKai Chiu

20210512
Seminar ReportDMWG Seminar by Dr. Nishimichi: Cosmology, the Fundamental for the DM on May 12, 2021
What we have known about dark matter (DM) is that it occupies ~25% of the energy density of our Universe. The precise determination of the cosmological parameter is crucially important for determining this abundance of DM. Another important point here is that one the value of those parameters are determined assuming a specific cosmological model, such as vanilla (i.e., the simplest) lambda CDM and so on. So we might have a different DM relic density if the assumption of the simplest LambdaCDM breaks. Hence the examination of the cosmological parameters and the model behind them is important twofold for DM physicists. The basic observable for the cosmological parameter is cosmic microwave background, the largescale structure, and so on. Those data are huge at the raw level, and still so large at the scientific data level. In order to derive a handful of cosmological parameters from such data, one must calculate the socalled summary statistics. By matching the summary statistics in simulation data of specific cosmological models (vanilla lambdaCDM, for example) adopting MCMC techniques, we arrive at the cosmological parameter that we need. Note that there is always degeneracy between cosmological parameters derived from observational data. The matching between the observational and simulated summary statistics takes a lot of costs in the calculation. By adopting analytical formula, the calculation becomes much quicker while the precision decreases at some level. The emulator, which is developed in the Dark Quest Project, solves this computational problem. It enables us to speed up the calculation while keeping the precision. The degeneracy between the parameters also becomes accessible. The precise summary statistics such as halo mass function, halomatter crosscorrelation, and far more... is crucially important for DM study. Halo formation theory and weak lensing search are kinds of examples for applications. With this new fantastic opensource tool of Dark Quest Project, the future for DM search study emerges definitely. We are looking forward to seeing a lot of cuttingedge as well as steady works implemented with this item in the near future! Reported by Nagisa Hiroshima

20210506
Seminar ReportiTHEMS Biology Seminar by Dr. Yukinori Nishigami on April 22, 2021
In iTHEMS biology seminar on April 22, Dr. Yukinori Nishigami (Hokkaido Univ.) gave us a talk about his research results, such as modeling the swimming behavior of unicellular organisms in their environment. First, Dr. Nishigami introduced us to the diversity of unicellular eukaryotes and the fact that they have their own specific movements. Many of the participants were amazed at how a small, singlecelled organism can move in complex ways using flagella and other mechanisms, and how the cells themselves can move in complex ways. Next, he talked about the main topic: modeling the phenomenon of ciliate accumulation in a stable environment. Through careful observation and simulation, he modeled the movement and found that the movement of ciliates in such an environment is due to the simple principle of cell shape and mechanosensitivity of cilia. He presented a good example of modeling the behavior of unicellular organisms, which led to a lively discussion at the seminar. Thank you very much, Nishigamisan! Reported by Euki Yazaki

20210428
Seminar ReportInformation Theory SG Seminar by Prof. Yoshihiko Hasegawa on April 28, 2021
On April 28, Prof. Yoshihiko Hasegawa (Associate Professor, The University of Tokyo) gave us a talk on the thermodynamic uncertainty relation (TUR). In the first part of his talk, he started from a motivation to consider tradeoff relations between energy and cost, showing biological examples. After reviewing general theory of stochastic thermodynamics and TUR for classical Markovian systems, he presented two recent works of him: one is to derive the TUR from informationtheoretic method (i.e., the CramerRao bound) and the second is to derive it from the fluctuation theorem. In the second part, he discussed quantum version of the TUR. After the review of quantum dynamics under measurement, he showed the quantum TUR for general open systems. He applied his theory to continuously measured systems and explained its physical meaning. There were a lot of interactive discussions during and after the talk. We really thank Prof. Hasegawa for his great talk. Reported by Ryusuke Hamazaki

20210423
Seminar ReportQuantum Matter Seminar by Dr. Se Kwon Kim on April 21, 2021
On April 21st, Dr. Se Kwon Kim from KAIST gave a talk about unconventional spin transport in quantum materials. First, he gave an overview of spintronic physics. The advancements in spintronic techniques can potentially lead to new applications, such as quantum information science. Then, he showed the realization of magnonic topological insulators, which are Chern insulators with spin current but without electron charge current. Furthermore, he predicted that spin transport induces vortex flow in superconductors. We thank Dr. Kim for giving a wonderful talk. Reported by ChingKai Chiu

20210422
Seminar ReportMathPhys Joint Seminar by Prof. Takuju Zen on April 13, 2021
On April 13, Dr. Takuju Zen from Kochi University of Technology gave a talk entitled “Selfadjoint extension in quantum mechanics and nonRydberg spectra of onedimensional hydrogen atom” at the iTHEMS MathPhys joint seminar. In the first part, he briefly explained the necessity of selfadjointness of operators in quantum mechanics and gave some important examples of such operators. Besides, he mentioned that the selfadjointness of Laplacian is equivalent to flux conservation in one dimension. Finally, he introduced studies of quantum particles on graphs. In the second part, the speaker discussed one dimensional Coulomb problem. Mainly, he noted that a simple selfadjoint extension of such hamiltonian could not be used. Then he provided a concrete procedure to study the solutions of one dimensional Coulomb problem and explained his interesting results. Reported by Yukimi Goto

20210421
Seminar ReportiTHEMS Colloquium by Prof. Kenji Fukaya on April 16, 2021
On April 16, 2021, 13:3015:00 (JST) 0:302:00(EDT), Professor Kenji Fukaya, Simons Center for Geometry and Physics, Stony Brook University, gave a colloquium talk by zoom. The title was "Mirror symmetry and KAM theory". His talk began at the origin of symplectic geometry, namely, the Hamiltonian dynamics. He reviewed completely integrable Hamiltonian systems, where the first integrals define foliation by half dimensional Lagrangian tori with linear flows. The KAM (KolmogorovArnoldMoser) theory describes perturbation of this system and shows that almost all tori persist. Then Professor Fukaya explained the Lagrangian torus fibration found by StromingerYauZaslow, with the example of the complex projective space. For the complex projective nspace, the image of the moment map is an nsimplex and the regular fibers are Lagrangian ntori. The inverse image of the boundary of the simplex corresponds to the singular fiber of the holomorphic fibration (the product of homogeneous coordinates) to a disk, By choosing a symplectic form, around the singular fiber of holomorphic fibration, there is defined the monodromy map by using the Hamiltonian flow of the Hamiltonian function that is the absolute value of the fibering. Professor Fukaya told that for this example in dim n = 2, the monodromy near the singular fiber exhibits the KAM theoretic behavior, but in dim n = 3, it is not the case with respect to the FubiniStudy symplectic form. However, he expects it can be the case with respect to the CalabiYau Kaehler form. This correspondence between symplectic manifolds (the torus fibration of the complex projective space) and complex manifolds (the holomorphic map to the disk) is an introductory example of the mirror symmetry. His talk might enter much deeper part related with homological mirror symmetry, but he stopped and concluded by saying that the KAM theory explains the transition from completely integrable systems to chaos and it should be possible to find alternative in mirror symmetry or field theory which will explain the transition from stable system to chaos. The talk of Professor Fukaya was really stimulating and his enthusiasm impressed the audience. Reported by Takashi Tsuboi

20210416
Seminar ReportQuantum Matter Seminar by Dr. Mario Flory on April 14, 2021
On April 14th, from Instituto de Física Teórica, Universidad Autonoma de Madrid and Consejo Superior de Investigaciones Científicas, in Spain, Dr. Mario Flory gave a seminar talk about the connection between the AdS/CFT correspondence and condensed matter physics. In the first half of the talk, he briefly reviewed the ideas of the correspondence and its history. The most important breakthrough is that Juan Maldacena first proposed the AdS/CFT in the late '90s. It is known that the entropy of the black hole is proportional to its area, so that this feature suggests a holographic principle. The AdS/CFT correspondence serves a better understanding of this principle by connecting strongly coupled CFTs to classical gravity. In the second half, Dr. Flory addresses the important application of the correspondence to condensed matter physics. Because of the AdS/CFT correspondence, the problems of the Kondo model in condensed matter physics can be tackled by solving gravity problems. He specifically discussed the entanglement problem through the correspondence in detail. We thank Dr. Flory for giving an excellent talk. Reported by Thore Posske (University of Hamburg, Germany) and ChingKai Chiu

20210415
Seminar ReportiTHEMS Biology Seminar by Dr. Kyosuke Adachi on April 15, 2021
In iTHEMS Biology Seminar on April 15th, Kyosuke Adachi (BDR/iTHEMS) talked about the formation mechanism and the biological function of liquid condensates in eucaryotic cell. First, he explained the higherorder structure of the chromatin fiber. He focused on A compartment and B compartment, in which the high and low transcription activities are shown, respectively. Then, he talked about the biomolecular condensate which is the liquid droplet composed of proteins. He talked about the important interaction on the condensate creation and explained the theoretical model based on the mean field theory. Finally, he explained the role of the condensates on the transcription activity. The transcription occurs in the condensates of some proteins coexisting on the chromatin fiber. The audience enjoyed his attractive talk. Thank you very much for great talk, Kyosuke! Reported by Hiroshi Yokota

20210415
Seminar ReportiTHEMS Biology Seminar by Prof. Catherine Beauchemin on April 8, 2021
In iTHEMS Biology Seminar on April 8th, Catherine Beauchemin (Deputy Program Director of RIKEN iTHEMS and Professor of Ryerson University) gave us an introductory talk on Markov chain Monte Carlo (MCMC) method. Many of theoretical scientists often use mathematical models, but it is difficult to correctly estimate parameter values of the model from experimental data. In this seminar, Catherine taught us the MCMC method is a powerful tool for parameter estimation using her recent research on cancer as an example. First, she explained four simple models of cancer growth. Then, using these models, she explained the basic idea and the detail process of the MCMC method. Her talk was very clear. I think that the seminar became helpful for the many attendees because the method can be applied to various fields of science and engineering. Merci beaucoup, Catherine! Reported by Shingo Gibo

20210415
Seminar ReportJournal Club of Information Theory SG by Dr. Yukimi Goto on April 14, 2021
On 14th April, Dr. Yukimi Goto gave an introduction to trace inequalities and related topics in our journal club of the Information Theory Study Group. She started from a simple counter example of the triangle inequality for operators on Hilbert space, and introduced density matrices, von Neumann entropy and WignerYanase skew information. Then, she explained the concept of jointly convex/concave functions and WignerYanaseDysonLieb theorem, and discussed the subadditivity and strong subadditivity of von Neumann entropy and its generalizations. Thank you, Gotosan, for interesting talk! Reported by Akinori Tanaka

20210412
Seminar ReportMath Seminar by Dr. Kai Koike on April 7, 2021
On April 7, Dr. Kai Koike from Kyoto University gave a talk entitled “Longtime behavior of moving solids in a fluid and the kinetic theory of gases” at Math seminar. In the first part, he reviewed a moving boundary problem of gases. Then he introduced some interesting results in fluid dynamics and developments concerning his research. In the second part, the speaker explained his results about the longtime behavior of a point particle moving in a fluid. It is an explanation of related numerical results for a BGK model of the Boltzmann equation. Reported by Yukimi Goto

20210405
Seminar ReportMath Seminar by Dr. Wataru Kai on March 22, 2021
On March 22, the last iTHEMS Math seminar in FY 2020 was held. This time, we invited Wataru Kai from Tohoku University. The title of the talk was “The GreenTao theorem for number fields”. The main topic of the talk was his recent joint work with his collaborators about the GreenTao theorem and its generalization. In the first part, he explained the historical background and the technology behind the proof of the GreenTao theorem, which asserts that there are arbitrarily long arithmetic progressions of prime numbers. In the second part, he introduced algebraic numbers and algebraic integers, which generalize rational numbers and integers, respectively, and he explained how we can generalize the GreenTao theorem to this situation. For example, if we think of numbers of the form a+b\sqrt{5}, these are algebraic numbers. Plotting them on the abplane, each of the numbers corresponds to a lattice point. We can draw a “shape” by choosing finite number of those lattices. Then, the generalized GreenTao theorem asserts that, by applying scaling and parallel translation, we can make all of the chosen lattice points correspond to prime elements simultaneously. Here, prime element is a generalization of prime number in the world of algebraic numbers. He also explained that at some point of the proof of the generalized GreenTao theorem, a classical technique wellknown to algebraic number theorists plays a fundamental role. Reported by Hiroyasu Miyazaki

20210402
Seminar ReportBiology Seminar by Dr. Yuji Hirono on April 1st, 2021
In iTHEMS biology seminar on April 1st, Yuji Hirono (Assistant Professor, Asia Pacific Center for Theoretical Physics, POSTECH, Korea) gave us a talk on chemical reaction networks. Hironosan has been recently working on chemical reaction networks with Miyazakisan, Hidakasan, and me. In the seminar, he talked about a new method of studying chemical reaction networks from network topology. He first explained graph theoretical aspects of chemical reaction systems, and then explained how these tools can be used to characterize reaction systems. Then, he explained a method of simplifying/deforming chemical reaction systems without affecting steadystate properties. I am grateful to Hironosan because I could improve my understanding of reaction systems through collaboration with him. Also, Hironosan and I have been friends since we were undergraduates, and I am happy to work together. Thank you very much, Hironosan! Reported by Takashi Okada

20210326
Seminar ReportBiology Seminar by Dr. José Gutiérrez on March 25, 2021
On March 25th, José Gutiérrez from Chiba University gave a talk at iTHEMS Biology Seminar about the evolution and diversification of cycads ("sotetsu" in Japanese) in Mexico. He explained how the different species and populations of cycads are distributed in different areas of Mexico, and showed how this can be explained by changes in the climate and the adaptation of each species to the different environment. He then discussed some general ideas of how speciation and diversification can occur. It was probably the first time for many iTHEMS members to hear about research in Ecology, and I think many of us learned something new. We were also able to have a nice and fruitful discussion after the talk. Reported by Jeffrey Fawcett

20210325
Seminar ReportInformation Theory SG by Dr. Akinori Tanaka on March 24, 2021
On 24th March, Dr. Akinori Tanaka gave an introduction to the reinforcement learning (RL) in our journal club of the Information Theory Study Group. He started from simple examples of a maze and a chess game to introduce the fundamental variables (i.e., states, actions, and rewards) and their evolution as a Markov decision process.After explaining that the goal of the RL is to maximize the value function, he discussed policy improvement theorem with the application to the epsilongreedy update. We thank Akinori for the great and clear talk!

20210318
Seminar ReportQuantum Matter Seminar by Prof. Takahiro Morimoto on March 16, 2021
On March 16th, Prof. Takahiro Morimoto from the University of Tokyo gave an online talk on geometric nonlinear optical effects. First, he introduced topological states of matter and the notion of the Berry connection to the audience. He explained how these concepts lead to the quantization of observable quantities in the linearresponse regime so that the audience learned the background to understand his main research works. After the introduction, he talked about several geometric nonlinear effects in topological states beyond the linear response theory. In particular, the shift current stems from the geometric nonlinear response, and the quantized circular photogalvanic effect can be realized in specific Weyl semimetals. In addition to the theoretical concepts, he also discussed experimental observations, such as perovskitebased solar cell materials and chiral multifold fermion compound RhSi. During and after the talk there were interactive discussions, and more than 25 participants attended this wellpresented talk. Reported by ChenHsuan Hsu (CEMS, RIKEN) and ChingKai Chiu

20210305
Seminar ReportQuantum Matter Seminar by Prof. Jan Budich on March 3, 2021
We are happy to invite Prof. Han Budich from the Dresden University of Technology to give a talk on March 3rd. The topic is Exceptional Topology of NonHermitian Systems: from Theoretical Foundations to Novel Quantum Sensors. Prof. Budich started with the review of the topological phases. After the introduction, he introduced the emergence of the exceptional points from nonHermitian systems. The exceptional points, which are similar to Weyl nodes, possess intrinsic topological properties. Later, he proposed a novel idea of the quantum sensor to probe topological features from nonHermitian platforms. It is great to have this nice talk.

20210226
Seminar ReportABBLiTHEMS Joint Seminar by Prof. Gordon Baym on February 22, 2021
On Feb. 22, our iTHEMS colleague, Gordon Baym, gave an online talk from UrbanaChampaign on the detection of the primordial neutrinos created in the early Universe. We are in the sea of those neutrinos at the present day with the neutrino density of about 56/cc for each neutrino species. Although neutrinos (antineutrinos) are lefthanded (righthanded) in early Universe, both cosmic and galactic magnetic fields as well as the gravitational inhomogeneities can flip their spins with respect to the momentum, so that the helicities (spin projection along the direction of the momentum) of the relic neutrinos could be a new probe of cosmic gravitational and magnetic fields. More that 60 participants attended this interesting seminar and there were lively discussions during and after the talk.

20210225
Seminar ReportBiology Seminar by Mr. Junichiro Iwasawa on February 18, 2021
On 18th February, we invited Junichiro Iwasawa from the University of Tokyo, who gave a talk about the unique study to identify the evolutionary constraints of drugresistance in Escherichia coli using automated highthroughput laboratory experiments. He first talked about the background of drug resistance evolution and about the wellknown / novel resistanceconferring genes for E. coli that were elucidated from their data. He then moved on to the details of the data analyses and explained the combined method of random forest regression and principal component analysis on the multiomics data. We enjoyed a long discussion on every single detail of the impressive work. We especially thank him for accepting our invitation despite the tight schedule with his dissertation. Thank you again for the great talk! Ryosuke Iritani

20210225
Seminar ReportBiology Seminar by Dr. Hiroshi Yokota on February 25, 2021
In iTHEMS biology seminar on Feb. 25th, Dr. Hiroshi Yokota (iTHEMS) talked about the mechanism of the nonlinear response of DNA under stretching force. In the introduction part, he mentioned the experimental technique using the magnetic tweezer to measure the extension of DNA under stretching force, and he also showed the experimental results of the nonlinear response of DNA. He then explained the strategy to clarify the origin of nonlinearity by applying mathematical modeling and statistical physics. Introducing the wormlike chain model, he transformed the Hamiltonian in an elegant way and analytically obtained the formula of the extension, which explains the experimental data. His description of the model was very clear, and there were many questions and discussions. We are thankful to Hiroshi for the intriguing talk. Kyosuke Adachi

20210219
Seminar ReportInformation Theory SG by Dr. Ryusuke Hamazaki on February 17, 2021
On 17th February, we had Ryusuke Hamazaki (from RIKEN Hakubi and iTHEMS) talking about the recent studies on the large deviation principle in our journal club of the Information Theory Study Group. He started off by demonstrating Bernoulli's process and how to compute the large deviations, and then defined the Level 2.5 large deviations in Markovian jump process, thereby providing the derivation of a recently proposed inequality (the thermodynamic uncertainty relation). Finally, he explained possible extensions to quantum systems. The talk received numerous questions in every single part, specifically from those interested in the derivation and application of the Level 2.5 large deviation. Thanks, Ryusuke, for the great and inspiring talk! Ryosuke Iritani (iTHEMS)

20210217
Seminar ReportDMWG Seminar by Dr. Sakai: Astrometory for DM search
The precise understanding of the local DM density, as well as its velocity distribution, is critical for dark matter (DM) search, especially for direct detection experiments. We need information about the global structure such as the position and rotation velocity of the Solar system when evaluating these quantities. Astrometry, which is a technique to measure the time dependence of the position of stars, powerfully probes the 3D gravitational structure of our Galaxy. There are two types of astrometric observations: the first one is based on optical (and infrared) photometry. The parallax is obtained by comparing two snapshots of the sky between two epochs. The Gaia mission is the representative for this kind of observation. Gaia reveals the structure of our Galaxy up to ~5kpc from the Sun. The mission is planned to continue the observation to extend our reach to ~10kpc, meaning that it should cover the Galactic Center in the near future. The second one is the VLBI observation. VLBI is an abbreviation of the verylong baseline interferometry. The spatial resolution of milliarcsecond is achieved with VLBI techniques. However, the sensitivity is limited and longlasting observations are required in general. In this sense, VLBI and optical photometry are complemental. One important discovery for DM search from VLBI astrometry is reported in this seminar. The VLBI observation of the Galactic disk region reveals the position of the Sun is closer to the Galactic Center compared to the conventional values used for a long time, and the rotation velocity is higher. This means that our Galaxy is heavier, i.e. contains much DM, and the relative velocity between DM particle and us is different, compared with the previous estimates. Also, the disk region does not reach the equilibrium yet. These facts should change the picture of our Galactic DM structure. New facilities for astrometric observations are now being planned and constructed. There are diverse possibilities for the synergy between DM search. The astrometry should give important indications such as the merger history of DM halo, dynamical interaction between the Milky Way and its satellite galaxies, the global structure of the Milky Way, and far more. We should stay tuned!

20210217
Seminar ReportiTHEMS Theoretical Physics Seminar by Mr. Masaaki Tokieda on February 16, 2021
On February 16, the iTHEMSphys seminar entitled "Quantum mechanical description of energy dissipation and application to heavyion fusion reactions" given by Mr. Masaaki Tokieda (Tohoku U.) was held. He introduced his work during graduate school, that is, considering dissipation and fluctuation to the quantum mechanics to unify the description of above the Coulomb barrier and subbarrier reactions. He also applied the method to heavyion fusion reactions. The seminar was held via the Zoom online conference systems. More than 20 people, including outside from iTHEMS, attended the seminar. The discussion was quite lively, and it was continued for long, even after the seminar.

20210215
Seminar ReportBiology Seminar by Dr. Keitaro Kume on February 12, 2021
In iTHEMS biology seminar on February 12, Keitaro Kume (Univ. of Tsukuba) gave us a talk about applying machine learning to the analysis of nonmodel organisms that are difficult to experiment with. First, Dr Kume introduced us about the brief mitochondrial evolution and several eukaryotes possessed not typical mitochondria as like Mitochondrion related organelle (MRO) which is highly degraded mitochondria. Next, he described the detection of mitochondrial localization signals and their applications, explaining that it is difficult to detect localization signals in mitochondria of nonmodel organisms, especially MROs. Finally, He obtained a large amount of data on MROlocalized proteins in nonmodel organisms, and through machine learning using the data as training data, he created a detector that can detect MROlocalized signals in such nonmodel organisms. He presented a good example of the connection between biological evolutionary research and machine learning, which led to a lively discussion at the seminar. Thank you very much, Kei!

20210205
Seminar ReportiTHEMS Theoretical Physics Seminar by Dr. DiLun Yang on February 4, 2021
On February 4, the iTHEMSphys seminar entitled "Quantum kinetic theory for chiral and spin transport in relativistic heavy ion collisions and corecollapse supernovae" given by Dr. DiLun Yang (Keio U.) was held. He has been working for the quantum kinetic theory. In his seminar, first, he introduced the general background of the quantum transport of the massless fermions and its anomaly. Then, he showed its application to the relativistic heavyion collisions and corecollapse supernovae. The seminar was held via the Zoom online conference systems. More than 20 people, including outside from iTHEMS, attended the seminar. The discussion was quite lively, and it was continued for long, even after the seminar.

20210205
Seminar ReportBiology Seminar by Mr. Yoshifumi Asakura on February 4, 2021
In iTHEMS Biology Seminar on Feb. 4th, Yoshifumi Asakura (Kyoto University) talked about modeling of the mechanochemical dynamics of an epithelial sheet. He first reviewed experimental observation of the epithelial sheet dynamics with ERK signals and simple theoretical modeling of the mechanochemical dynamics. He then presented the main questions, stressing the importance of twodimensionality and parameter heterogeneity in tissue dynamics. In the method part, he introduced the hierarchical modeling which connects the particlebased and continuum models with the cell tracking data. He showed that the models can reproduce the essential features of the tissue dynamics with ERK signals, and moreover, can be used for the quantitative prediction of the velocity field of cells. His presentation contained many beautiful movies of the epithelial sheet dynamics and model simulations. We are thankful to him for the nice talk! Kyosuke Adachi

20210129
Seminar ReportiTHEMS Theoretical Physics Seminar by Prof. Nobutoshi Yasutake on January 28, 2021
On January 28, the iTHEMSphys seminar entitled "Many body problems from quarks to stellar evolutions" given by Prof. Nobutoshi Yasutake (Chiba Institute of Technology/JAEA) was held. He has been working for the stelar evolutions as gravitational manybody problems and the hadronic matter as quantum manybody problems based on the Lagrangian schemes. Recently, he discussed hadronic matters properties using the color molecular dynamics. The seminar was held via the Zoom online conference systems. Around 20 people, including outside from iTHEMS, attended the seminar. The discussion was quite lively, and it was continued more than one hour even after the seminar.

20210128
Seminar ReportInformation Theory SG by Dr. Hiroshi Yokota on January 27, 2021
Today's journal club of the Information Theory Study Group had Hiroshi Yokota (iTHEMS) talk about the replicapermutation method to obtain stable structures. He started off the talk with some introduction of proteins' stable structures. To avoid reaching nonglobally optimal structures, the replicaexchange method used to be applied; however, this method may be computationally expensive and less efficient in some circumstances. Later work has proposed the replicapermutation method by which the candidates of the stable structures are permutated (shuffled) and relaxes the detailed balance condition. He drew an analogy with allocation problems of various volumed cups each filled with water. He finally talked about the application in a paper that examines amyloid 𝛽 oligomerization. The audience asked lots of questions about the algorithm per se, physical meaning, and even its potential applications. Thanks, Hiroshi, for the fantastic talk! I as well as arguably all the audience really enjoyed it! Ryosuke Iritani (RIKEN iTHEMS)

20210125
Seminar ReportBiology Seminar by Dr. Takashi Okada on January 21, 2021
On January 21st, Takashi Okada (RIKEN iTHEMS) gave a talk on Boolean networks at the iTHEMS Biology Seminar. He first introduced the basics of Boolean networks and their applications in Biology, and then talked about his recent work on information transfer in Boolean networks. Network is a theme that is common to almost all fields of Science and is relevant to most of us. Thus, his talk was very useful to get a basic idea of what Boolean network is and how it is applied. Not only the basic introduction, but also his recent work on information transfer was explained very clearly in simple terms, which made it possible for all of us to follow and enjoy. Thanks Takashi!  Jeffrey Fawcett

20210121
Seminar ReportBiology Seminar by Dr. Koichiro Uriu on January 7, 2021
On January 7th, Dr. Koichiro Uriu gave a talk on one of the most important pattern formation in our body. Koichiro was an active member of iTHES, and is currently an assistant professor at Kanazawa Univ. Rhythmic (ON and OFF) and also spatial gene activity pattern, termed the segmentation clock underlies our body axis segmentation (“Taisetsu" in Japanese). Thus, robust gene activity oscillation propagates from the backward to the forward domain by which the segment is formed sequentially. In the seminar, Koichiro discussed the recovery processes of the segment formation after the removal of the drug which blocks oscillator coupling in a fish, called zebrafish. Curiously, experiments show that intermingled segments can occur in the body of the fish especially when the drug is removed at early stage. To understand the pattern recovery, he developed a physical model incorporating mechanics and genetic oscillations. During and after the talk, there were numerous questions from the audience because his talk was very interesting and also very clear. Thank you and see you, Koichiro!  Gen Kurosawa
362 news