Photo of Carmen Molina-París Carmen Molina-París
Date
April 13 (Thu) at 10:00 - 11:00, 2023 (JST)
Speaker
  • Carmen Molina-París (Researcher, Theoretical Biology and Biophysics, Los Alamos National Laboratory, USA)
Venue
  • via Zoom
Language
English
Host
Catherine Beauchemin

We consider the maintenance of “product” cell populations from “progenitor” cells via a sequence of one or more cell types, or compartments, where each cell’s fate is chosen stochastically. If there is only one compartment then large amplification, that is, a large ratio of product cells to progenitors comes with disadvantages. The product cell population is dominated by large families (cells descended from the same progenitor) and many generations separate, on average, product cells from progenitors. These disadvantages are avoided using suitably-constructed sequences of compartments: the amplification factor of a sequence is the product of the amplification factors of each compartment, while the average number of generations is a sum over contributions from each compartment. Passing through multiple compartments is, in fact, an efficient way to maintain a product cell population from a small flux of progenitors, avoiding excessive clonality and minimising the number of rounds of division en route. We analyse the possible descendants of one progenitor cell, families of cells that journey through the sequence of compartments. We find that the ability of product cells to perform their function may be negatively affected by the number of rounds of cell division that separates them from their progenitor, because every round of division brings with it a risk of mutation.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event