March 11 (Fri) at 16:00 - 17:00, 2022 (JST)
  • Prof. Yudai Suwa (Associate Professor, Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo / Affiliate Associate Professor, Yukawa Institute for Theoretical Physics, Kyoto University)
  • via Zoom

Neutrinos are guaranteed observable from the next Galactic supernova (SN). Optical lights and gravitational waves are also observable but can be difficult to observe if SN location in the galaxy and the explosion details are unsuitable. The key to the next coming SN observation will be understanding various physical quantities using neutrinos first and then connecting them to other signals. In particular, understanding neutrinos in the late time (> 1 sec after the onset of explosion) is essential, since physics in this time scale has much smaller uncertainties than that of the early time. We should construct a simple and understandable neutrino model based on the late-time emissions. It allows us to tackle the physics in the early phase like the explosion mechanism.
In this talk, I will discuss the following topics: 1) how to model the complete neutrino emissions from the very early phase up to the last observable event. 2) what physical quantities (e.g., mass and radius of neutron stars) can be extracted from observations using large statistical neutrinos as physics probes. 3) how to use these extracted physical quantities to link with the explosion mechanism of SN and multi-messenger observations.