January 22 (Mon) at 16:00 - 18:00, 2024 (JST)
  • Thanaporn Sichanugrist (Ph.D. Student, Graduate School of Mathematical Sciences, The University of Tokyo)
  • Shion Chen (Project Assistant Professor, International Center for Elementary Particle Physics (ICEPP), The University of Tokyo)
  • via Zoom
Nagisa Hiroshima

Title: Wave-like Dark Matter Search Using Qubits
The rapid controllability required for quantum computers makes the currently proposed quantum bit modalities also attractive as electromagnetic field sensors. One of the promising applications is wave-like dark matter searches, where the electric field converted from the coherent dark matter excites the qubits, leading to detectable signals [Phys. Rev. Lett. 131, 211001]. The quantum coherence between the qubits can be utilized to enhance the signal rate in a multi-qubit system. By designing an appropriate quantum circuit to entangle the qubits, it was found that the signal rate can scale proportionally to $n_q^2$, with $n_q$ being the number of sensor qubits, rather than linearly with $n_q$ [arXiv: 2311.10413]. In the seminar, we overview the theoretical framework of the search, elaborate on the signal-enhancing mechanism driven by quantum entanglement with specific examples of the quantum circuits, and discuss how the scheme can be implemented in the platform of future fault-tolerant quantum computers. We also provide the introduction of the experimental realization, and report the status of the experimental works carried out in UTokyo/ICEPP.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event

Related News