Quantitative Characterization of the Cellular Physical Properties to Understand the Organ Regeneration and Cancer Progression
- Date
- January 23 (Thu) at 16:00 - 17:00, 2025 (JST)
- Speaker
-
- Takahisa Matsuzaki (Assistant Professor, Department of Applied Physics, Graduate School of Engineering, Osaka University / TechnoArena Associate Professor, Center for Future Innovation, Graduate School of Engineering, Osaka University)
- Language
- English
- Host
- Akihisa Yamamoto
Since the discovery of regulating the differentiation of "single" stem cells by extracellular mechanics, researchers have focused on the mechanobiology of single cells. Our collaborative studies provided the first breakthrough to identify optimal mechanics for multi-cellular, liver organogenesis (Takebe, .., Matsuzaki,.., Yoshikawa et al., Cell Stem Cell 2015, Stem Cell Reports 2018). My motivation is to be a pioneer internationally in understanding the role of heterogenic physical properties in multi-cellular related life-phenomena such as cancer cell adhesion (Matsuzaki et al., Phys Chem Chem Phys 2018, Bioconjugate Chem 2023, PNAS 2024, Osaka University Award 2024.), regeneration of colon/muscle (iScience 2022, Taniguchi,.., Matsuzaki et al., Mucosal Immunology 2023, J. Phys Chem Letter 2014, 2022, 2024.), and bone (Mizuno, .., Matsuzaki et al., Stem Cell Res. Ther. 2022, iScience 2024). In my presentation, I will overview the recent progress in developing fluorescence/interference microscopy combining atomic force microscopy (AFM), and its application to organ regeneration and cancer progression.
This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.