July 22 (Mon) at 10:30 - 11:45, 2024 (JST)
  • Kumpei Imamura (Ph.D. Student / JSPS Research Fellow DC, Department of Advanced Materials Science, The University of Tokyo)
Ching-Kai Chiu

Recently, the layered honeycomb material α-RuCl3 exhibits several anomalous features that are consistent with expectations of the Kitaev quantum spin liquid (KQSL) under in-plane magnetic field. Most remarkably, finite planar thermal Hall conductivity has been observed, whose magnitude is close to the half-integer quantization value expected for the chiral edge currents of Majorana fermions[1]. However, it has been reported that the thermal Hall conductivity shows strong sample dependence. Also, there are attempts to offer a different explanation by the bosonic edge excitations due to topological magnons or phonon. A key to distinguishing between fermionic and bosonic origins of unusual features in the high-field state of α-RuCl3 is the difference in the field angle dependence of the excitation gap.

Therefore, we distinguish these origins from combined low-temperature measurements of high-resolution specific heat and thermal Hall conductivity with rotating magnetic fields within the honeycomb plane. A distinct closure of the low-energy bulk gap is observed for the fields in the Ru-Ru bond direction, and the gap opens rapidly when the field is tilted. Notably, this change occurs concomitantly with the sign reversal of the Hall effect. General discussions of topological bands show that this is the hallmark of an angle rotation–induced topological transition of fermions, providing conclusive evidence for the Majorana-fermion origin of the thermal Hall effect in α-RuCl3[2].

Furthermore, to understand the nature of the high-field state, it is crucial to elucidate the effects of disorder, which inevitably exists in real materials. We artificially introduce point defects by electron irradiation and compare the low-energy excitations in the pristine and irradiated sample by high-resolution specific heat measurements. We observed an additional in-gap T-linear term in C/T, whose coefficient shows distinct field-sensitive behaviors suggestive of Majorana physics in the KSL. This can be interpreted by the weak localization of Majorana fermions, which is induced by the disorder[3]. Moreover, recently, we succeed in synthesizing very high-quality crystals of α-RuCl3[4].


  1. Y. Kasahara et al., Nature (London) 559, 227 (2018)
  2. K. Imamura et al., Sci. Adv. 10, eadk3539 (2024)
  3. K. Imamura et al., Phys. Rev. X 14, 011045 (2024)
  4. R. Namba, K. Imamura et al., arXiv: 2402.03986

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event