Relations between fractal dimensions and arithmetic progressions
 Date
 October 23 (Tue) at 11:35  12:35, 2018 (JST)
 Speaker

 Kota Saito (Nagoya University)
 Language
 English
In this talk we give estimates for the dimensions of sets in real numbers which uniformly avoid finite arithmetic progressions. More precisely, we say that $F$ uniformly avoids arithmetic progressions of length $k\geq 3$ if there is an $\epsilon>0$ such that one cannot find an arithmetic progression of length $k$ and gap length $\Delta>0$ inside the $\epsilon\Delta$ neighbourhood of $F$. Our main result is an explicit upper bound for the Assouad (and thus Hausdorff) dimension of such sets in terms of $k$ and $\epsilon$. In the other direction, we give examples of sets which uniformly avoid arithmetic progressions of a given length. We also consider higher dimensional analogues of these problems, where arithmetic progressions are replaced with arithmetic patches lying in a hyperplane. As a consequence, we obtain a discretised version of a `reverse Kakeya problem': we show that if the dimension of a set in $\mathbb{R}^d$ is sufficiently large, then it closely approximates arithmetic progressions in every direction. The above is a joint work with Fraser and Yu. Finally we show that the converse of `reverse Kakeya problem' does not hold. This is a singleauthor work.