October 20 (Thu) at 16:00 - 17:00, 2022 (JST)
  • Keiichi Morita (Ph.D. Student, School of Advanced Sciences Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies (SOKENDAI))
  • via Zoom
Keiichi Morita

In co-flowering species with shared pollinators, interspecific pollen transfer (IPT) may occur, in which pollen grains are transferred between different species. Yet, it is unclear how the costs of IPT in reduced pollen grains (i.e., costs for males) and seed set (i.e., costs for females) can affect coexistence and evolution of sex ratio. We investigated the conditions for which two closely related plants can coexist and of evolution in sex ratio, by constructing a theoretical model that incorporates the dynamics of population, pollen export, pollen reception on an ovule, and seed production in two closely related plants with resource competition and IPT.

The model analysis revealed that coexistence is likely with infrequent IPT, α, and weak interspecific resource competition, β, and high production rates of pollen, Am, and ovules, Af. Also, we found a trade-off where too low value of either Am or Af makes both species go extinct. Furthermore, even when α and β were small enough, too low Am and Af made extinction of both species likely, because of the Allee effect due to resource competition and interspecific pollen competition for a small number of ovules. Adaptive dynamics, analysis of evolutionary dynamics showed that sex ratio evolve to 1:1 as the optimum allocation of resource to produce pollen grains and ovules.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event

Related News