January 16 (Tue) at 16:00 - 17:00, 2024 (JST)
  • Anna Dewar (Postdoctoral Researcher, Department of Biology, University of Oxford, UK)
  • via Zoom
Ryosuke Iritani

Bacteria are highly social. Much of this sociality occurs through the production of cooperative ‘public goods’. Unlike in animals, bacterial genes are able to transfer horizontally between individuals, in addition to vertically via descendants. This widespread horizontal gene transfer has implications for the concept of relatedness and how cooperation is maintained in bacteria. It has been suggested that horizontal gene transfer, particularly via small segments of DNA called plasmids, could stabilize cooperation in bacteria. Transfer of a cooperative gene could turn non-cooperative ‘cheats’ into cooperators, preventing cheats from invading and destabilizing cooperation. We tested this with a comparative analysis across bacterial species. In contrast to the predictions of the hypothesis, we found that genes for cooperative traits were not more likely to be carried on either: (1) plasmids compared to chromosomes; or (2) plasmids that transfer at higher rates. Our results were supported by theoretical modelling which showed that, while horizontal gene transfer can help cooperative genes initially invade a population, it has less influence on the longer-term maintenance of cooperation.

This is a closed event for scientists. Non-scientists are not allowed to attend. If you are not a member or related person and would like to attend, please contact us using the inquiry form. Please note that the event organizer or speaker must authorize your request to attend.

Inquire about this event