January 17 (Mon) at 11:00 - 12:00, 2022 (JST)
  • Dr. Kanji Mori (Research Institute of Stellar Explosive Phenomena (REISEP), Fukuoka University)
  • via Zoom

Axion-like particles (ALPs) are a class of hypothetical pseudoscalar particles which feebly interact with ordinary matter. The hot plasma of stars and core-collapse supernovae is a possible laboratory to explore physics beyond the standard model including ALPs. Once produced in a supernova, some of the ALPs can be absorbed by the supernova matter and affect energy transfer. We recently calculated the ALP emission in core-collapse supernovae and the backreaction on supernova dynamics consistently. It is found that the stalled bounce shock can be revived if the coupling between ALPs and photons is as high as g_{a gamma} ~ 10^{-9} GeV^{-1} and the ALP mass is 40-400 MeV. In this talk, I will briefly review stellar and supernova constraints on ALPs and then discuss our recent results.

Related News