セミナーレポート
337 ニュース
-
2021-11-02
セミナーレポートReport of iTHEMS colloquium - High-Energy Neutrino Astrophysics in the Multimessenger Era
Our Universe is filled with mysterious high-energy emissions: Cosmic-rays (CR), neutrinos, and gamma-ray photons. They could be generated at the same source populations although we have not yet confirmed. Among these messenger particles, the neutrino is a special one to probe their origins. Cosmic rays are deflected by the magnetic field, while high-energy photons are attenuated during its propagation. Only the neutrino could preserve the information about the production sites. Also, the neutrino should be a messenger to physics beyond the Standard Model. The fact that the neutrinos have finite masses itself requires the extension of the Standard Model. Its origin could be related to dark matter, new kinds of interactions, and so on. On-going and planned experiments should enable us to access these problems by combining spectrum, timing, and flavor information. In this colloquium, Prof. Kohta Murase reviewed the above contents focusing on the latest results from neutrino observations and the development of the source modeling in the multi-messenger approach. About 100 people have enjoyed his talk. Lots of questions and some deep discussions related to the topic continued after the main part of the talk. We would like to thank him again and express our great appreciation for your attendance. Reported by Nagisa Hiroshima
-
2021-10-29
セミナーレポートiTHEMS Biology Seminar by Prof. Ikkyu Aihara on October 28, 2021
In the Biology Seminar on 28th October, Ikkyu Aihara (University of Tsukuba) gave a talk on frog chorus and its synchronization phenomena using experimental, fieldwork, and mathematical models. An earthquake that had occurred just before the seminar made me a bit nervous about whether we can hold the seminar, but the talk thankfully went very well. As I'm a big fan of Kuramoto-model as well as Ikkyu's work, I really enjoyed the talk on the whole. I saw one of the most interesting experiments of his ongoing work, and so I'm really looking forward to seeing the work being published. I also enjoyed a private conversation between Ikkyu and Kazuyuki Aihara before and during the talk! Thank you again for the great talk, Ikkyu-san! Reported by Ryosuke Iritani
-
2021-10-27
セミナーレポートQuantum Matter SG seminar by Dr. Robert Peters on October 20, 2021
The Quantum Matter Study Group invited Dr. Robert Peters from Kyoto University to talk about nonlinear responses in strongly correlated systems. In the beginning, the speaker introduced nonlinear responses by reviewing several related experimental data, including a nonlinear photo-induced current. Then, going beyond linear response theory, he explained the approach to compute nonlinear responses in strongly correlated systems. Here, the essential step of his work was to neglect vertex corrections, which enables the analysis of higher-order correlation functions within established frameworks of, e.g., dynamical mean field theory. Equipped with this tool, he showed nonreciprocal conductivity in a ferromagnetic non-centrosymmetric heavy Fermion compound and giant nonlinear Hall effect in a Weyl-Kondo-Semimetal. Reported by Thore Posske (University of Hamburg, Germany) and Ching-Kai Chiu
-
2021-10-27
セミナーレポートDMWG Seminar by Prof. Takashi Toma on October 20, 2021
Among the varieties of dark matter (DM) candidates, the so-called WIMP (an abbreviation of the weakly interacting massive particle) is famous for its beautiful mechanism to achieve the current DM density. In the early Universe, WIMP was in the thermal bath of the Standard Model (SM) particles. In this stage, (i) DM+DM->SM+SM, (ii)SM+SM->DM+DM interaction as well as (iii)DM+SM-> DM+SM interaction occur frequently enough. The strategy searching for each process corresponds to indirect, collider, and direct detection experiments. The cross-section (i.e., the interaction rate) of the above processes correlates with each other. The dropping off of the interaction rate of the process (i) below to the Hubble expansion rate of the Universe fixes the number density of DM particles. We need only two parameters in this WIMP freeze-out scenario: mass and the interaction cross-section. Nowadays the constraints from direct detection experiments are so severe that WIMP in the low mass range of m
DM+SM, which is a process referred to as co-annihilation, the cross-section of the process (iii) could be suppressed in a velocity-dependent way. A concrete example introduced in this talk is the one considering the SM particle in the process (i)' as the neutrino. From the momentum conservation, DM accumulated in the Sun annihilates to produce boosted DM and neutrino, hence we expect a double-peak spectrum in large-volume neutrino experiments for this case. The solution to the core-cusp problems of usual WIMP and the origin of the neutrino mass, which is another important problem in the Standard Model, are also within the focus of this story. The world of DM is not closed on its own. It should be a key to understanding nature and obtaining a picture of our Universe! Reported by Nagisa Hiroshima -
2021-10-27
セミナーレポートNEW WG Seminar by Mr. Akihiro Yamada on October 20, 2021
Akihiro Yamada (Keio U.) gaive a talk on "Floquet vacuum engineering: laser-driven chiral soliton lattice in the QCD vacuum" based on his recently published paper [1]. After briefly introducing the Floquet theory and the chiral perturbation theory, Akihiro showed emergence of chiral soliton lattice structure in the QCD vacuum under a very strong laser field with large frequency. About 20 people have joined the seminar, and we had fruitful discussions during and after the seminar. Reported by Hidetoshi Taya
-
2021-10-27
セミナーレポートiTHEMS Biology Seminar by Dr. Hiroshi Yokota on October 21, 2021
In the iTHEMS Biology seminar on October 21, I talked about the driving force and the mechanism of the chromosome formation. The chromosome is constructed by chromatin fiber condensed into the rod-like shape. The rod-like shape comes from the consecutive chromatin loops. The driving force of the chromosome formation is one of the controversial issues. Two hypotheses on the driving force are considered: energy gain from ATP hydrolysis and thermal fluctuation energy. In this talk, I discussed the driving force derived from the free energy of the chromatin loop. Moreover, the mechanism associated with each driving force was also discussed by using the dynamical model based on the free energy. The result implies that these mechanisms dynamically switch. This study is collaborated with Masashi Tachikawa in Kyoto University who is also visiting scientist in iTHEMS. As there were various questions and discussions from the audiences, I was so happy. Thank you very much!
-
2021-10-19
セミナーレポートQuantum Matter SG seminar by Mr. Seishiro Ono on October 12, 2021
Quantum Matter Study Group invited Seishiro Ono from the University of Tokyo to give a talk about symmetry indicators for topological (nodal) superconductors. First, he gave a review of symmetry indicators for topological insulators. In condensed matter physics, using topological invariants to search for topological materials is difficult; alternatively, symmetry indicators serve a simpler calculation to identify topological states of matter since this method considers the properties located at symmetry invariant momenta. After the introduction, the speaker extended the indicator approach to topological (nodal) superconductors. Although the different types of superconducting pairings lead to complications in the symmetry-based classification, the speaker showed that their work classifies all the (magnetic) space groups with possible superconducting pairings. Furthermore, he demonstrated their own database server listing all the classification of the topological superconductors by using the approach of symmetry indicators. The work serves as an important guide for hunting topological superconductors. Reported by Ching-Kai Chiu
-
2021-10-18
セミナーレポートABBL/iTHEMS Astro Seminar by Dr. Nobuya Nishimura on October 15, 2021
At the seminar, there were lots of questions and answers for r-process nucleosynthesis and kilonova events. The speaker presented lots of his excellent works on them, and the audience enjoyed his presentation with curiosity. Reported by Shigehiro Nagataki
-
2021-10-12
セミナーレポートQuantum Matter SG seminar by Prof. Bohm-Jung Yang on October 7, 2021
The Quantum Matter study group had the honor to invite Prof. Bohm-Jung Yang to give a talk on October 7th. He talked about wave function geometry and anomalous Landau levels of flat bands. He started with a heuristic introduction by explaining the geometry matters in a flat band, including the notion of the (Hilbert-Schmidt) quantum distance and the quantum metric. Particularly, he used a Kagome lattice as an example of the singular touching point of the flat band and quadratic band locked by the geometry. Furthermore, in the presence of a magnetic field, the singular flat band evolves into very dense anomalous Landau levels. Remarkably, the relation between the Landau level spreading and the maximum of the quantum distance can be described by a universal formula, independent of material parameters. In consequence, deducing the Landau level spreading in (spectroscopic) experiments would allow for the measurement of the quantum distance, thus probing the quantum geometry of the wave functions. The study was extended to the (spin-orbit-coupled) Lieb lattice with one flat band sandwiched by two dispersive bands. In this case, the Landau level spreading of the isolated flat band is determined by the fidelity tensor. This talk showed us the interesting and subtle interplay between the band flatness and the Landau levels. Reported by Ching-Kai Chiu and Chen-Hsuan Hsu (CEMS, RIKEN)
-
2021-10-11
セミナーレポートiTHEMS Theoretical Physics Seminar by Prof. Keisuke Izumi on September 13, 2021
At the seminar organized by the iTHEMS-physics study group, Prof. Keisuke Izumi discussed the S-matrix unitarity toward UV completion. Einstein gravity is not renormalizable and does not hold perturbative unitarity at high energy. This is the main reason why the construction of quantum gravity is difficult. A conjecture was proposed by Llewellyn Smith, "renormalizablility and tree-unitarity at high energy give the same conditions". This conjecture would be important because it shows that, if a theory is constructed such that unitarity is satisfied, renormalizablility holds automatically, and vice versa. Unfortunately, a counterexample was pointed out. If a theory involves higher derivatives, there exists a theory which is renormalizable but does not satisfy tree-unitarity. A candidate of quantum gravity, the quadratic gravity (R_{\mu\nu}^2 gravity), is one of the examples. Therefore, Llewellyn Smith's conjecture would not be useful for the discussion of quantum gravity. Then, Prof. Izumi and his collaborators introduced a new conjecture, "renormalizablility and S-matrix unitarity (or often called pseudo-unitarity) at high energy give the same conditions". In his talk, Prof. Izumi explained Llewellyn Smith's conjecture and his contribution to it. Then, he introduced his new conjecture. Finally, he showed that his conjecture works well even in theories with higher derivatives. Reported by Ryo Namba
-
2021-09-29
セミナーレポートReport of iTHEMS colloquium - Finding Gravitational Waves from the Early Universe
Prof. Eiichiro Komatsu, a director at the Max Planck Institute for Astrophysics (Germany), shared his enthusiasm for observational aspects of cosmology and in particular the primordial gravitational waves (GWs) generated during the earliest stage of our Universe, called cosmic inflation. Such GWs distort the space while propagating and leave footprints as the polarizations of the cosmic microwave background (CMB) and as a more direct signal at the GW interferometers. As a world-leading expert on all areas of cosmology, Prof. Komatsu explained the fundamental aspects of CMB and GW observations and their implications in understanding the physics of the primordial Universe (from his remark, "We all came from quantum fluctuations"). He made his talk visually accessible to non-experts while providing fresh interpretations of the data in cosmological observations. He also clarified the importance and excitement of the upcoming LiteBIRD project, the first CMB mission led by Japan, which expects its launch toward the end of 2020's. After the official part of his talk, he remained to be available for both scientific and non-scientific discussions with the audience in an informal setting and exchanged more technically involved thoughts as well as his everyday-life experiences. Reported by Ryo Namba
-
2021-09-17
セミナーレポートNEW WG Seminar by Prof. Yuta Murakami on September 15, 2021
Yuta Murakami from Tokyo Institute of Technology told us about "High-harmonic generation in strongly correlated systems." High-harmonic generation (HHG) by strong AC electric fields is one of the hottest topics in cond-mat physics. After a brief overview of HHG in various materials such as gasses and semi-conductors and also recent experimental results in Mott insulators, Yuta explained his recent numerical studies on HHG in strongly correlated systems and clarified unique features of HHG arising from the strongly-correlated nature. About 30 people joined the seminar and we enjoyed fruitful discussions during and after the seminar. Reported by Hidetoshi Taya
-
2021-09-17
セミナーレポートNEW WG Seminar by Prof. Matteo Baggioli on September 10, 2021
Matteo Baggioli (Jiao-Tong U. Shanghai) gave a talk on "Towards a description of amorphous solids and viscoelastic materials using effective field theory and holographic methods." Amorphous and viscoelastic materials appear in many places, not only in scientific problems but also in our daily life. Despite its ubiquity, there are many intriguing phenomena that are not yet understood, in particular, in the non-linear regime. In the talk, Matteo explained his recent attempts to formulate non-linear responses in amorphous and viscoelastic materials based on holographic and effective-field-theory techniques. Matteo also discussed open problems and future directions that we can pursue in the future. There were about 30 participants from various fields of physics, and we had fruitful discussions from a broad point of view during and even after the talk. Reported by Hidetoshi Taya
-
2021-09-09
セミナーレポートiTHEMS Biology Seminar by Dr. Euki Yazaki on September 9, 2021
Molecular phylogenetic analysis is one of the most important analysis methods in biology. If used well, it can help us understand how organisms diversified and how genes evolved. The methods of molecular phylogenetic analysis are subject to debate, so we are familiar with the mathematical background. However, we are not so familiar with how the data sets for phylogenetic analysis are made up. In this Biology Seminar, the main alignment algorithms for making data sets were explained and discussed. Scoring is important in alignment algorithms, and there was a discussion on scoring for amino acid and nucleic acid mutations and scoring for gap penalties. The discussion on alignment distance was also heated. I hope the audience all enjoyed it. I would like to have another discussion on phylogenetic analysis and mathematical background next time. Thank you very much!
-
2021-09-09
セミナーレポートABBL-iTHEMS Joint Seminar by Dr. Yosuke Mizuno on September 3, 2021
Prof. Yosuke Mizuno (Tsung-Dao Lee Institute, Shanghai JiaoTong University) gave an excellent talk on "The Polarised ring ofthe Supermassive Black Hole in M87: EHT observations andtheoretical modeling". He introduced that the Event HorizonTelescope (EHT) had mapped the central compact radio source of theelliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Recently EHT provided new images of the polarised emissionaround the central black hole in M87 on event-horizon scale. Thispolarised synchrotron emission probes the structure of magnetic fieldsand the plasma properties near the black hole. He and hiscollaborators found that the net azimuthal linear polarisationpattern may result from organised, poloidal magnetic fields in the emission region. In a quantitative comparison with a large simulated polarimetric image library, he found that magnetically arrested accretion disks are favoured to explain polarimetric EHT observations. In this talk, he also discussed about a new modelling study of M87jets in the collimation and acceleration region. Reported by Shigehiro Nagataki
-
2021-09-03
セミナーレポートQuantum Matter SG seminar by Dr. Levente Rózsa on September 1, 2021
Dr. Levente Rózsa gave a talk about Yu-Shiba-Rusinov (YSR) states and other localized states appearing in superconductors for Quantum Matter Study Group on September 1st, 2021. There are three distinct types of localized in-gap states in superconductors —- Majorana bound states, YSR states, and Caroli-de Genne-Matricon states. Dr. Rózsa first introduced Majorana bound states emerging in topological superconductors. Next, he talked about the anisotropic spacial distribution of the YSR states on the La surface (0001). The YSR state is a localized in-gap state induced by magnetic impurity in a superconductor. He showed that this anisotropy stems from the anisotropic Fermi surface. Furthermore, he discussed the localized states appearing in vortex cores are Caroli-de Genne-Matricon states, instead of Majorana bound states. He went through the experimental details and compared them with his theoretical simulation. The talk was well-organized and clear. We thank Dr. Rózsa for sharing his interesting research works. Reported by Thore Posske (University of Hamburg, Germany) and Ching-Kai Chiu
-
2021-09-03
セミナーレポートiTHEMS Biology Seminar by Dr. Yingying Xu on September 2, 2021
In today's Biology Seminar, Yingying Xu (iTHEMS) introduced one paper arguing the quantitative explanation for immune-escape of virus by means of quasispecies dynamics models with Gillespie algorithm. She firstly explained the background information about the immune systems. She then taught us how the authors simulated the dynamics and made a comparison with experimental data. We finally discussed potential future directions to further development of quantitative modeling of chronic or acute infectious virus, highlighting a potential issue in estimating the mutation rate of virus. We learned a lot from this journal club, thank you so much for the great talk, Yingying! Reported by Ryosuke Iritani
-
2021-08-30
セミナーレポートiTHEMS Biology Seminar by Dr. Gen Kurosawa on August 26, 2021
During this covid-19 crisis, we check our body temperature (Tb) every day since Tb is essential variable of our body. In fact, some organisms like humans try to keep Tb constant, but some other organisms chose completely different strategies, including hibernation (冬眠). On August 26, I talked about hibernation at the iTHEMS Biology Seminar. Hibernation is a strategy for the organisms, including a primate to survive in a severe season with limited food and water availability. Although there have been a lot of studies about hibernation since the era of Aristotle, fundamental problems of hibernation remain unknown. Recently, we started to investigate mathematically body temperature profile of hibernating hamsters. During hibernation, the organisms drastically decrease their basal metabolisms, drop their body temperature (Tb) more than 10 degree, and become immobile. Mysteriously, Tb during hibernation does not remain constant at very low value, but greatly fluctuates with inconstant period of several days. At the seminar, I showed that a simple model can reproduce well and forecast Tb data during hibernation. Thankfully, there were a lot of questions and suggestions about the method of time-series analysis, hibernating species, and so on which are precious to me. This study is the collaboration with Prof. Yoshifumi Yamaguchi at Institute of Low Temperature Science, Hokkaido Univ and Shingo Gibo at iTHEMS. I’m really enjoying this research. I am happy if the audiences enjoyed the seminar and forgot about the heat. Thanks!
-
2021-08-25
セミナーレポートiTHEMS Biology Seminar by Dr. Naohiro Kawamoto on August 19, 2021
In iTHEMS Biology Seminar on August 19th, Dr. Naohiro Kawamoto (Osaka University) gave a talk on cyanobacterial circadian oscillations. It is known that three proteins (KaiA, KaiB and KaiC) are sufficient for generating self-sustained circadian oscillations in cyanobacterium. In this talk, Dr. Kawamoto experimentally showed that the lack of kaiA causes damped oscillation. Then, he analyzed the benefit of the damped circadian oscillation by using a simple mathematical model of the interaction between the damped and self-sustained oscillators. This analysis revealed that kaiA-less damped oscillator can resonate to another oscillatory process. Finally, he talked about evolution of related to evolution of circadian clock system for future work. After the talk, we enjoyed discussion about mathematical modeling of various types of coupled oscillators. Thank you very much, Naohiro! Reported by Shingo Gibo
-
2021-08-25
セミナーレポートQuantum Matter SG seminar by Prof. Daw-Wei Wang on August 23, 2021
On August 23rd, 2021, Quantum Matter Study Group invited Prof. Daw-Wei Wang to give a talk on the application of machine learning in condensed matter physics. First, he briefly introduced learning and emphasized using supervised machine learning in condensed matter physics. The practical condensed matter problem he focused on is the physics of many-body systems since the many-body problem is challenging to solve. By randomly choosing small portions of a many-body Hamiltonian, machine learning can almost accurately predict the energy of the many-body system. Prof. Wang used the 1D Fermi-Hubbard model and the 1D Ising model to show the consistency between the learning prediction and the known solutions. The limitation of this approach is that the system size has to be fixed. To resolve this problem, he used the transfer learning approach to extend the prediction to a larger system size by learning from small systems. In the end, he talked about identifying the topological phase transition points by improving the machine learning approach in the literature. The talk is very comprehensive and informative. We thank Prof. Wang for giving a wonderful talk. Reported by Ching-Kai Chiu
-
2021-08-18
セミナーレポートiTHEMS Math Seminar by Dr. Yalong Cao on August 6, 2021
The final Math Seminar of this semester was held on August 9th. This time, we invited our new colleague Dr. Yalong Cao as a speaker. First, he gave an overview of the celebrated Yang-MIlls theory in real dimensions 3 and 4. Next, it was explained that one can complexify the above Yang-Mills theory on Calabi-Yau 3 and 4-folds. The point is that in algebro-geometric setting, moduli spaces of Yang-Mills connections admit nice compactifications. Finally, he explained the connection between the above story and the enumerative geometry, specifically on counting (stable) coherent sheaves and complex ASD connections on Calabi-Yau 4-folds. He and his collaborators proposed a conjectural sheaf-theoretic interpretation of Klemm-Pandharipande’s BPS invariants of CY 4-folds defined using Gromov-Witten theory. Reported by Hiroyasu Miyazaki
-
2021-08-17
セミナーレポートiTHEMS Theoretical Physics Seminar by Dr. Shunichiro Kinoshita on August 16, 2021
Shunichiro Kinoshita (Chuo U.) gave a talk on "Application of AdS/CFT to non-equilibrium phenomena in external electric fields. "After a brief introduction to the AdS/CFT correspondence, Shunichiro analyzed a holographic QCD system under strong electric fields constructed with D3/D7 branes. Shunichiro considered two kinds of electric-field configurations.The first one was a field with a sudden switching on (quenched setup). Shunichiro discussed how the confinement-deconfinement phase transition occurs and showed the possibility of deconfinement driven by turbulence. The second configuration was rotating electric fields. Shunichiro discussed how the frequency of the electric field affects the phase transition and argued the possibility of a novel state, distinct from the vacuum, for infinitesimally small electric fields with finite frequency. Reported by Hidetoshi Taya
-
2021-08-10
セミナーレポートInformation Theory SG Seminar by Prof. Masayuki Ohzeki on August 4, 2021
On August 4, Prof. Masayuki Ohzeki (Tohoku University/Tokyo Institute of Technology/Sigma-i Co., Ltd.) gave us a talk on the quantum annealing. In the first part, after a general introduction, he demonstrated how to use the D-Wave machine from our personal computers. It is remarkable that we can easily manipulate a number of quantum spins ourselves to solve an optimization problem. In the second part, he reviewed working principles for quantum annealing: he started from the original proposal in 1998 and explained more recent methods such as the reverse annealing. He also explained carefully the usefulness and the limits of the quantum annealing. After discussing the theoretical perspective and how the machine is implemented using the superconducting qubits, he presented the application of the quantum annealer to the real world. He showed his collaborations with many companies and how the quantum annealing can be used to solve real-life problems, such as the optimization of the evacuation routes or listing the hotel recommendation on the web. A lot of interactive discussions were made during and after the talk. We really thank Prof. Ohzeki for his great talk. Reported by Ryusuke Hamazaki
-
2021-08-06
セミナーレポートiTHEMS Biology Seminar by Dr. Ai Niitsu on August 5, 2021
In iTHEMS biology seminar on August 5th, Dr. Ai Niitsu (RIKEN Theoretical Molecular Science Lab.) gave a talk about the membrane peptide design and computational modeling. First, she mentioned the recent machine learning approach for the prediction of the protein structures. Then, she pointed out that the prediction of the membrane related structure and stoichiometry of protein complexes is still challenging. Next, she explained the computational design of the coiled-coil peptides in membrane. The amino acid sequence of the peptide is determined so that the interchain interaction is satisfied. As a result, she obtained some stable transmembrane assemblies of the peptide. Along with the modelling of the peptide assemblies and their conductance estimate, she experimentally measured the conductance of the peptide channel in membrane by imposing various voltages. The high voltage induces the multi-conductance state, which differs from the low voltage case where a stable single channel was observed. Based on further computational modelling and experiments, that multi-conductance state was suggested to come from the change in the peptide structures and stoichiometry of a single pore. Her computational method and experimental results attract the audience interests and induce various discussions. Thank you very much for great talk, Ai! Reported by Hiroshi Yokota
-
2021-08-02
セミナーレポートInformation Theory SG Seminar by Dr. Qibin Zhao on July 28, 2021
In the Information Theory SG seminar on July 28th, Dr. Qibin Zhao gave us an exciting talk about the basics and applications of tensor networks (TNs) in machine learning. His talk was divided into three parts, (i) tensor methods for data representation, (ii) TNs in deep learning modeling, and (iii) frontiers and future trends. In the first part, he started with a graphical introduction of tensors and dimension reduction methods. He then presented the important question of how the imperfect data represented by tensors can be completed using the low-rank approximation, and introduced several possible approaches with impressive examples. Here he explained the TNs and decomposition methods in detail using diagrammatic notations, which can concisely express the tensor operations such as the contraction. In the second part, he talked about the useful application of TNs to model compression in machine learning. He illustrated the ways to represent the neural network model by tensors and to learn the weights through the contraction. Interestingly, the density matrix renormalization group (DMRG), which was originally proposed in the quantum physics field, may be used as a learning algorithm. In the last part, he showed an overview of recent topics on TNs and machine learning such as TNs for probabilistic modeling and supervised learning with projected entangled pair states (PEPS). Intriguingly, the topological structure of TNs can be optimized for a given image, and the learned topology significantly depends on the input data and is more complex than conventional simple structures such as lines, trees, or cycles. The clearly structured talk took us from the basics to the cutting-edge subjects, and there were many questions and discussions during the talk. We are deeply grateful to Dr. Qibin Zhao for his excellent talk on the fast-growing interdisciplinary field. Reported by Kyosuke Adachi
-
2021-07-30
セミナーレポートiTHEMS Biology Seminar by Prof. Mayumi Seto on July 29, 2021
On July 29th, Mayumi Seto (Nara Women's University) gave a talk on the application of thermodynamics to microbial modeling. She first introduced some important concepts of adenosine tri-phosphate (ATP), its synthesis in biology, and chmotrophic interactions between microorganisms. She then moved on to mathematical models explicitly incorporating energy flows in the microbial interactions. She finally gave implications from her work for future and ongoing studies, and after the talk we casually discussed her exciting projects. For me, she was the person whom I met on the very first visitation at Kyushu University in 2009 when I was, as an undergrad student at another university, yet unsure to start my Ph.D. at Kyushu University or not, and I'm sure her kind and encouraging guidance was one of the decisive factors for me being here as a researcher. Thanks again for the fantastic talk, Mayumi! Reported by Ryosuke Iritani
-
2021-07-12
セミナーレポートiTHEMS Colloquium by Prof. Shingo Iwami on July 8, 2021
In his presentation for the iTHEMS Colloquium, Prof. Shingo Iwami discussed the foundational approach of his research: using a mathematical model-based approach to link experimental data from ever-improving experimental measurement technology in order to tackle problems in Biology, particularly in hematology, infectious diseases, cancer, etc. He illustrated his research approach through several examples that ranged from HIV, Hepatitis C virus, and the new SARS corona virus (SARS-CoV-2). He highlighted some of the key challenges that are faced when trying to extract specific information from limited data, and how properly calibrated models can be used to simulate experiments that cannot be performed. He also talked about his plans for the future, and introduced the research team he newly formed at Nagoya University, the interdisciplinary Biology Laboratory or iBLab. Reported by Catherine Beauchemin
-
2021-07-07
セミナーレポートiTHEMS Theoretical Physics Seminar by Dr. Myungo Shim on July 5, 2021
On July 5, Myungo Shim from Kyung Hee University, Korea, gave the iTHEMS-physics seminar on a correspondence between three-dimensional gauge theories. He proposed a novel procedure of assigning a pair of non-unitary topological quantum field theories (TQFTs), TFT$_\pm [T_0]$, to a (2+1)D interacting $N=4$ superconformal field theory (SCFT) $T_0$ of rank $0$, i.e. having no Coulomb and Higgs branches. The topological theories arise from particular degenerate limits of the SCFT. Modular data of the non-unitary TQFTs are extracted from the supersymmetric partition functions in the degenerate limits. As a non-trivial dictionary, he proposed that $F = {\rm max}\{ - \log |S^{(+)}_{0\alpha}| \} = {\rm max}\{- \log |S^{(-)}_{0\alpha}|\}$, where $F$ is the round three-sphere free energy of $T_0$ and $S^{(\pm)}_{0\alpha}$ is the first column in the modular S-matrix of TFT$_\pm$. From the dictionary, he derived the lower bound on $F$, $F \geq -\log \left(\sqrt{\frac{5-\sqrt{5}}{10}} \right) \simeq 0.642965$, which holds for any rank $0$ SCFT. The bound is saturated by the minimal $N=4$ SCFT proposed by Gang-Yamazaki, whose associated topological theories are both the Lee-Yang TQFT. Before going to the technical part, he also provided some background materials including some peculiar features in 3d gauge theories, some supersymmetries, anyons, and some modular data of MTC in the talk. Reported by Toshihiro Ota
-
2021-07-06
セミナーレポートiTHEMS Math Seminar by Mr. Mizuki Oikawa on July 2, 2021
On July 2 Mizuki Oikawa gave a talk at the iTHEMS math seminar. He talked about the interaction among modular functions, conformal field theories and moonshine phenomena. Below is a recap of his talk. The j-invariant is an example of modular form. Its coefficients in the q-expansion is closely related to a certain sporadic simple group (the monster group), and the relation can be understood via the theory of vertex operator algebras (VOA), which is a mathematical model of conformal field theory (CFT). This gives an example of moonshine phenomena. On the other hand, there is another mathematical framework for CFT, called the conformal net, which depends on the theory of von Neumann algebras. Carpi-Kawahigashi-Longo-Weiner gave a correspondence between a certain class of VOAs (which includes the monstrous moonshine VOA) and that of conformal nets. Recently, Tener gave a geometric realization of some VOAs and the corresponding conformal nets via Segal CFT. The talk was highly stimulating, and the audience asked many questions that arise from both mathematical and physical sides. Reported by Michiya Mori
-
2021-07-06
セミナーレポートiTHEMS Biology Seminar by Prof. Takahiro Sakaue on July 1, 2021
On July 1st, Prof. Takahiro Sakaue (Aoyama Gakuin University) gave us a talk about chromatin dynamics in C. elegans embryos. He first introduced important factors for gene expression such as phase separation, topological constraints, and chromatin dynamics. After explaining how to see the chromatin dynamics under the microscope, he showed us interesting experimental results about the dependence of MSD on the nucleus radius. By considering polymer models, he showed that two kinds of typical length/time scales appear and discussed how the type of anomalous diffusion of chromatin is determined depending on the time/length scale. Moreover, he theoretically explained the observed nucleus-size dependence of MSD. We are grateful to Sakaue-san for the exciting talk! Reported by Kyosuke Adachi
-
2021-07-01
セミナーレポートiTHEMS Theoretical Physics Seminar by Dr. Yuki Fujimoto on June 29, 2021
On June 29th, Yuki Fujimoto (The University of Tokyo) gave the iTHEMS-physics seminar on the equation of state (EoS) in the dense baryonic matter. The EoS of dense baryonic/quark matter is the crucial ingredient for understanding neutron stars. He nicely reviewed the current state of the high-density matter EoS based on the QCD perspectives. His recent work on the EoS calculated within the pQCD framework with the resummation [Fujimoto & Fukushima, 2011.10891] gives the Hard Dense Loop resummation formula which turns out to reduce the uncertainty compared with the conventional pQCD estimate without resummation. His approach extends the applicability of the QCD-based EoS down to densities realized inside neutron stars and infers a smooth matching with the baryonic EoS. The audience asked a lot of questions and had fruitful discussions. Reported by Etsuko Itou
-
2021-06-29
セミナーレポートiTHEMS Theoretical Physics Seminar by Dr. Kanato Goto on June 21, 2021
On June 21st, Kanato Goto (RIKEN iTHEMS) gave the iTHEMS-physics seminar on the black hole information paradox. Recently, there is a proposal for the formula for a quantum black hole entropy, called the island formula, which is expected to reconcile the conflict between the thermal and quantum natures of the black hole. One may regard the island formula as a generalization of the so-called Ryu-Takayanagi formula for the entanglement entropy, but its derivation is yet to be clarified. In the talk, after reviewing the current status of the black hole information paradox, Kanato explained their work on a derivation of the island formula based on the replica method for the gravitational path integral. The audience asked a lot of questions and we really enjoyed the talk. Reported by Masaru Hongo
-
2021-06-28
セミナーレポートDMWG Seminar by Dr. Satoshi Shirai on June 24, 2021
We are now living in the era of precision cosmology. The relic abundance of dark matter (DM) is now observationally well-determined, and its error is smaller than O(1)%. This means that the same or much higher precision is required when we make theoretical predictions. Weakly Interacting Massive Particle (WIMP) has long been the leading candidate for DM because of its beautiful mechanism to predict the observed relic abundance. WIMP is in the same thermal bath as the Standard Model particles in the beginning. At a certain point when the temperature of the Universe is smaller than the DM mass, it decouples to fix its number density. The yield of the DM is determined by its annihilation cross-section to the Standard Model sector. It seems that there is no ambiguity in the calculation of this process at first: the cross-section is purely theoretical and all the remainings are described in the Standard Model physics. However, the source of the uncertainty does remain in the Standard Model sector. The dilution of the number density of DM particle depends on the expansion rate of the Universe, which is determined by the Standard Model particles. The effective degree of freedom (d.o.f) of the relativistic species controls this factor. We have to deal with the non-equilibrium dynamics to precisely describe the time-evolution of the d.o.f, in which we need numerical approaches. In this talk, he introduced his work to update these calculations. By implementing the latest findings in the non-equilibrium dynamics in i) the neutrino decoupling, ii) the QCD phase transition, iii) the electroweak phase transition, and iv) the perturbative calculations, they found that the final d.o.f is smaller than the previous estimate in more than 1%. This is larger than the level of precision in observations. It is also important that the uncertainty is quantified by them. Another good news is that he makes the calculated d.o.f with its error publically available. With these updates, we now correctly know the points to probe DM! Reported by Nagisa Hiroshima
-
2021-06-28
セミナーレポートMath Seminar by Dr. Kazuki Kannaka on June 18, 2021
There was a math seminar by Kazuki Kannaka on June 18. He gave an introductory talk on his research fields, representation theory and briefly explained his study. He first explained some basic definitions in representation theory. He then explained the mathematical tiling problem with the Lie group. In the second part, he explained how the distribution of the compact pseudo-Riemannian manifolds differs for parameters. He also introduced his example, which has a continuous spectrum. Reported by Keita Mikami
-
2021-06-25
セミナーレポートInformation Theory SG Seminar by Prof. Yoshiyuki Kabashima on June 23, 2021
With great honor, we have invited Prof. Yoshiyuki Kabashima to our information theory seminar to give a stimulating talk about “introduction to the replica method” on 23rd June. Replica method is a physics-based technique developed for analyzing disordered many-body problems, which is now becoming popular more in information science using the structural similarity between problems from these two different fields. Prof. Yoshiyuki Kabashima is a master of the replica method. He applied this method to many problems in information theory, such as CDMA, compressed sensing, clustering of networks, error correcting codes, etc. The talk contains two parts. In the first part, as an example of the concept, he explained the mathematical similarity of three problems whose origins are unrelated with one another--random energy model (Physics), error correcting codes (information theory) and random k-SAT problem (theoretical computer science). A unified perspective is the common structure of the three examples is the conditional distribution, and the key to solve the problems is the assessment of the average free energy. The replica method provides a systematic way to performing the configurational average. Even the mathematical justification is still an open problem, there is no known example to which the replica method leads to wrong results by appropriately taking into account the replica symmetry breaking if necessary. In the second part, Prof. Yoshiyuki Kabashima demonstrated the calculation of replica method using an example of random energy model of spin glass. This simple model has an exact solution without using the replica method. One can see how replica method can provide the correct solution by taking care of the assumptions of replica symmetry and 1-step replica symmetric breaking (1RSB) in different temperature ranges. In the end, he gave an expert perspective of large deviation statistics of replica method and 1RSB solution. Many excellent questions and stimulating discussions have happened during the 2.5-hour seminar. We absorbed by the world of “replicas”. We thank to Prof. Yoshiyuki Kabashima for giving us this great opportunity and hope new ideas of applications of the replica method appear in iTHEMS. Report by Yingying Xu
-
2021-06-25
セミナーレポートiTHEMS Biology Seminar by Dr. Jeffrey Fawcett on June 10, 2021
On 10 June 2021, our iTHEMS member Jeffrey Fawcett gave a talk about “the origin and dispersal of buckwheat” at the Biology Seminar. Jeffery works on or has worked on a broad range of topics related to genomics, evolution, genetics, bioinformatics, and systems biology. This time, he talked about his recent worldwide collaboration work using genomic data of wild samples from China (around Yunnan, Sichuan, and Tibet) and cultivated samples from various parts of the world to understand “when”, “where”, and “how” buckwheat originated and then spread across the world and came to Japan. He explained the significance of studying "domestication", which can contribute to research on evolution, molecular breeding and implications for human history. Buckwheat, which soba noodles is made from, is now such a familiar everyday life related plant in Japan. We are surprised how such a genomic approach about soba revealed the history of ancient world and Japan and gave us a hint about the origin of Japanese people. We are looking forward to further discovery of this interesting research topic. Report by Yingying Xu
-
2021-06-25
セミナーレポートiTHEMS Biology Seminar by Prof. Fumito Mori on June 24, 2021
In iTHEMS biology seminar on June 24, Fumito Mori (Assistant Professor, Faculty of Design, Kyushu University) gave us a talk on synchronization and variability of the periodicity. In the seminar, he introduced minimal models of coupled oscillators to discuss synchronization. Interestingly, the variability of the periodicity, in general, depends on which variables (or genes) we consider and on which timepoints we (or cells) measure the periodicity. He demonstrated this subtlety in the so-called repressilator system. He then discussed how noise and interaction parameters can be inferred from given data of periodicity. In the talk, he showed us many general results, which were very impressive to us. Finally, I am grateful to Mori-san because I asked him to do the seminar just two weeks before it, but he kindly accepted. Thank you very much for the fantastic talk, Mori-san! Reported by Takashi Okada
-
2021-06-07
セミナーレポートiTHEMS Biology Seminar by Dr. Yingying Xu on June 3, 2021
On June 3rd, Yingying Xu who recently joined iTHEMS gave a talk at the Biology Seminar. She spoke about her past research on applying ideas from statistical physics to genetics, especially on what is called "epistasis". Statistics plays a crucial role in the study of genetics, and one of the main challenges now is to understand the combined effect of multiple mutations, which is often referred to as epistasis. This clearly requires input from statistical physics, so I was very excited to hear the progress made with people from statistical physics - Yingying and her colleagues being involved. Her talk was also very helpful for everyone to get an idea of how advanced statistics/mathematics is being applied to genetics. It was also great to see the expertise of Yingying, and we will be looking forward to further interaction with her. Reported by Jeffrey Fawcett
-
2021-05-31
セミナーレポートQuantum Matter SG seminar by Dr. Rui-Xing Zhang on May 26, 2021
On May 26th, Dr. Rui-Xing Zhang from the University of Maryland gave a talk about the classification of anomalous floquet higher-order topological insulators. He started with a pedagogical introduction to floquet topological insulators, which possess robust boundary states. Notably, there are two types of non-trivial floquet topology. 1. The floquet bands inherit the topology of the static bands. 2. The non-trivial physics of the anomalous floquet topological insulators stems from dynamical phase bands. Dr. Zhang extended the idea of the second type to higher-order topological insulators, which have robust corner states or edge ones. Dr. Zhang specifically discussed the anomalous floquet topology for chiral symmetric systems preserving C2 rotation symmetry. Using this example, he generalized the classification of the topological phases to various point groups. We thank Dr. Zhang for giving this wonderful talk. Reported by Ching-Kai Chiu
-
2021-05-27
セミナーレポートiTHEMS Biology Seminar by Dr. Kouki Uchinomiya on May 27, 2021
On May 27 (JST), we had online talk by Dr. Kouki Uchinomiya at iTHEMS Biology Seminar. He was one of active members of RIKEN iTHES, and currently he is at Central Research Institute of Electric Power Industry in Tokyo. This time, Kouki talked about radiation and cancer risk. Radiation can cause DNA damage for which it can cause cancer in our body. In the field of radiation and cancer, there has been a mystery that cancer risk decreases as the dose rate of radiation (Gy/h) decreases while the total dose of radiation fixed. By incorporating the competition between the normal and the damaged cells by radiation into a simple mathematical model, he successfully explained the mysterious phenomena. His model revealed that the key parameters including a relative reproductive ability of the damaged cells determine the cancer risk. According to him, those parameters will be experimentally measured in the near future, and we understand that the model should contribute to the quantitative estimation of cancer risk by radiation. During and after the talk, there were stimulating discussions as for the philosophy behind his very simple model and a possible extension to the model with the effect of immune system. We enjoyed his concise talk very much. Thanks Kouki! Reported by Gen Kurosawa
-
2021-05-27
セミナーレポートMath Seminar by Dr. Michiya Mori on May 24, 2021
On May 24, there was an iTHEMS math seminar by Dr. Michiya Mori. In the first part, he explained his research on Lowebner theorems. He first described the notion of abstract order. He then introduced an order on the space of the hermitian matrix. He explained Molnar's results that the order-preserving map must be affine on a particular good subset of matrices. Lastly, he explained his results with his collaborator that a map on matrix domain is an order isomorphism if and only if it has a good extension to the upper half-space. In the second part, the speaker introduced the projective Hilbert space, the space of all quantum states, and Fubini-Study metric, an "argument" on the projective Hilbert space. He then introduced the result by Wigner that any bijective maps preserving Fubini-Study metric are unitary or anti-unitary. The speaker introduced Uhlhorn's variant of this result: if the dimension of the space is larger than three, any bijection preserving argument π/2 is unitary or anti-unitary. The speaker also explained that Gehér extended Uhlhorn's works for other cases, but there was one open case. The speaker explained his result with Gehér that the variant of the result by Uhlhorn holds for this last case. Reported by Keita Mikami
-
2021-05-24
セミナーレポートJournal Club of Information Theory SG by Dr. Kyosuke Adachi on May 19, 2021
On May 19, Dr. Kyosuke Adachi talked about “Amino acid sequence and protein phase separation” at the journal club of information theory study group. First, he introduced the history of protein states, from its structure observed with X-ray to intrinsically disordered region (IDR) and liquid-liquid phase separation. In this talk, the speaker focused on IDR and phase separations. Second, he explained some biological functions of phase separation, such as compartmentalization of specific molecules, facilitation of biochemical reaction, and stress response. And the talk moved a question of what kind of sequence feature determines phase properties. Mainly, the speaker discussed coarse-grained models, which are expected to determine phase properties. Finally, he mentioned the problem of how to classifying IDRs and the importance of the coarse-grained sequence. Thank you, Adachi-san, for the interesting talk! Reported by Yukimi Goto
-
2021-05-20
セミナーレポートMath Seminar by Dr. Iyan Mulia on April 22, 2021
On April 22, the iTHEMS Math seminar was held (Sorry for the delay of the report!). This time, we invited Dr. Iyan Mulia from RIKEN Cluster for Pioneering Research, Prediction Science Laboratory. The title of the talk was “Alternative tsunami observing and forecasting systems”. The main topic of the talk was his work about how to catch and predict tsunami. First, he proposed new approaches to construct tsunami observing systems. There exist various observing systems already, but they share a big problem that they are very expensive. Since observing systems need to be updated regularly, it is very important to reduce the cost. Iyan’s proposal is to make use of existing commercial vessels and airplanes. Since they already exist and form a dense network all over the world, it will suffice to let them observe the sea level altitude and transfer the information. Iyan and his collaborators already demonstrated in experiments that the proposed observing system is accurate enough to detect large tsunamis. Next, he moved to another topic. Once we observe the occurrence of tsunami, next step is to predict its impact in the areas near the coast. While there are conventional mathematical models which provide very accurate prediction, it needs relatively long time for calculation. This is a non-ignorable defect because it means the delay of the warning to residents. If we use linear models instead of the accurate model, the calculation becomes much faster but the accuracy of the prediction gets low. Iyan’s proposal is plug in the Machine Learning techniques to bridge these two models. He trained neural networks to predict the results of the accurate model from the results of the linear model. This method actually gives a satisfactory result: the prediction is very accurate and fast. If this method is accepted widely, it will be possible to predict the effect of tsunami very accurately in very short time. Reported by Hiroyasu Miyazaki
-
2021-05-14
セミナーレポートiTHEMS Biology Seminar by Prof. Yuji Sakai on May 14, 2021
In iTHEMS Biology Seminar on May 14th, Prof. Yuji Sakai (Univ. of Tokyo) talked about the theoretical model of the autophagosome. First, he explained the autophagosome formation process, where the disk-like and cup-like shapes of the membrane are observed. Then, he talked about the previous theories, where the spontaneous curvature is not considered. Next, he explained his theoretical model, in which the spontaneous curvature is induced and stabilized by the “curvature generator”. By minimizing the free energy in his model, he quantitatively reproduced the autophagosome formation via the disk and the cup. Finally, he mentioned the candidate of the curvature generator. His attractive talk induced various discussions and questions from the audience. Thank you very much for nice talk, Yuji! Reported by Hiroshi Yokota
-
2021-05-14
セミナーレポートQuantum Matter Seminar by Prof. Christopher Bourne on May 12, 2021
Quantum Matter Study Group invited Prof. Christopher Bourne to give a talk on aperiodic and amorphous topological phases on May 12th, 2021. In the beginning, he reviewed topological phases in lattice systems and introduced integer Chern numbers. To generalize the topological phases, we extend the lattice to Delone sets, including quasicrystal and amorphous solid. The main talk focused on the topological phases for those types of solid. He provided examples to show the amorphous patterns exhibit gapped phases. He showed that the invariants can be defined as noncommutative Chern number and computed the non-zero Chern number in the gapped phase. It is interesting to see that quasicrystal and amorphous solid share similar integer Chern numbers, and the idea can be further extended to different spatial dimensions with symmetries. We thank Prof. Bourne for giving a wonderful talk. Reported by Ching-Kai Chiu
-
2021-05-12
セミナーレポートDMWG Seminar by Dr. Nishimichi: Cosmology, the Fundamental for the DM on May 12, 2021
What we have known about dark matter (DM) is that it occupies ~25% of the energy density of our Universe. The precise determination of the cosmological parameter is crucially important for determining this abundance of DM. Another important point here is that one the value of those parameters are determined assuming a specific cosmological model, such as vanilla (i.e., the simplest) lambda CDM and so on. So we might have a different DM relic density if the assumption of the simplest Lambda-CDM breaks. Hence the examination of the cosmological parameters and the model behind them is important two-fold for DM physicists. The basic observable for the cosmological parameter is cosmic microwave background, the large-scale structure, and so on. Those data are huge at the raw level, and still so large at the scientific data level. In order to derive a handful of cosmological parameters from such data, one must calculate the so-called summary statistics. By matching the summary statistics in simulation data of specific cosmological models (vanilla lambda-CDM, for example) adopting MCMC techniques, we arrive at the cosmological parameter that we need. Note that there is always degeneracy between cosmological parameters derived from observational data. The matching between the observational and simulated summary statistics takes a lot of costs in the calculation. By adopting analytical formula, the calculation becomes much quicker while the precision decreases at some level. The emulator, which is developed in the Dark Quest Project, solves this computational problem. It enables us to speed up the calculation while keeping the precision. The degeneracy between the parameters also becomes accessible. The precise summary statistics such as halo mass function, halo-matter cross-correlation, and far more... is crucially important for DM study. Halo formation theory and weak lensing search are kinds of examples for applications. With this new fantastic open-source tool of Dark Quest Project, the future for DM search study emerges definitely. We are looking forward to seeing a lot of cutting-edge as well as steady works implemented with this item in the near future! Reported by Nagisa Hiroshima
-
2021-05-06
セミナーレポートiTHEMS Biology Seminar by Dr. Yukinori Nishigami on April 22, 2021
In iTHEMS biology seminar on April 22, Dr. Yukinori Nishigami (Hokkaido Univ.) gave us a talk about his research results, such as modeling the swimming behavior of unicellular organisms in their environment. First, Dr. Nishigami introduced us to the diversity of unicellular eukaryotes and the fact that they have their own specific movements. Many of the participants were amazed at how a small, single-celled organism can move in complex ways using flagella and other mechanisms, and how the cells themselves can move in complex ways. Next, he talked about the main topic: modeling the phenomenon of ciliate accumulation in a stable environment. Through careful observation and simulation, he modeled the movement and found that the movement of ciliates in such an environment is due to the simple principle of cell shape and mechanosensitivity of cilia. He presented a good example of modeling the behavior of unicellular organisms, which led to a lively discussion at the seminar. Thank you very much, Nishigami-san! Reported by Euki Yazaki
-
2021-04-28
セミナーレポートInformation Theory SG Seminar by Prof. Yoshihiko Hasegawa on April 28, 2021
On April 28, Prof. Yoshihiko Hasegawa (Associate Professor, The University of Tokyo) gave us a talk on the thermodynamic uncertainty relation (TUR). In the first part of his talk, he started from a motivation to consider trade-off relations between energy and cost, showing biological examples. After reviewing general theory of stochastic thermodynamics and TUR for classical Markovian systems, he presented two recent works of him: one is to derive the TUR from information-theoretic method (i.e., the Cramer-Rao bound) and the second is to derive it from the fluctuation theorem. In the second part, he discussed quantum version of the TUR. After the review of quantum dynamics under measurement, he showed the quantum TUR for general open systems. He applied his theory to continuously measured systems and explained its physical meaning. There were a lot of interactive discussions during and after the talk. We really thank Prof. Hasegawa for his great talk. Reported by Ryusuke Hamazaki
-
2021-04-23
セミナーレポートQuantum Matter Seminar by Dr. Se Kwon Kim on April 21, 2021
On April 21st, Dr. Se Kwon Kim from KAIST gave a talk about unconventional spin transport in quantum materials. First, he gave an overview of spintronic physics. The advancements in spintronic techniques can potentially lead to new applications, such as quantum information science. Then, he showed the realization of magnonic topological insulators, which are Chern insulators with spin current but without electron charge current. Furthermore, he predicted that spin transport induces vortex flow in superconductors. We thank Dr. Kim for giving a wonderful talk. Reported by Ching-Kai Chiu
-
2021-04-22
セミナーレポートMath-Phys Joint Seminar by Prof. Takuju Zen on April 13, 2021
On April 13, Dr. Takuju Zen from Kochi University of Technology gave a talk entitled “Self-adjoint extension in quantum mechanics and non-Rydberg spectra of one-dimensional hydrogen atom” at the iTHEMS Math-Phys joint seminar. In the first part, he briefly explained the necessity of self-adjointness of operators in quantum mechanics and gave some important examples of such operators. Besides, he mentioned that the self-adjointness of Laplacian is equivalent to flux conservation in one dimension. Finally, he introduced studies of quantum particles on graphs. In the second part, the speaker discussed one dimensional Coulomb problem. Mainly, he noted that a simple self-adjoint extension of such hamiltonian could not be used. Then he provided a concrete procedure to study the solutions of one dimensional Coulomb problem and explained his interesting results. Reported by Yukimi Goto
337 ニュース