”Field theoretical approach to relativistic hydrodynamics" on June 12, 2020.
The iTHEMS Theoretical Physics Seminar is hold on June 12, 2020. The speaker is Masaru Hongo in University of Illinois at Chicago/RIKEN iTHEMS. The title is ”Field theoretical approach to relativistic hydrodynamics”.
Hydrodynamics is a low-energy effective theory of a conserved charge density, which describes a long-distance and long-time behavior of many-body systems. It is applicable not only to a non-relativistic weakly-interacting dilute gas but also a relativistic strongly-interacting dense liquid like a quark-gluon plasma. The main purpose of this seminar is to explain how we can derive the hydrodynamic equation from the underlying field-theoretical description of systems [1-3]. The derivation is based on the recent development of non-equilibrium statistical mechanics, and they show that the procedure to derive hydrodynamic equations is similar to the so-called renormalized/optimized perturbation theory. Also, to describe transport phenomena in local thermal equilibrium, they give a path-integral formula for a thermodynamic functional, which results in the emergence of thermally induced curved spacetime [2]. These results enable us to derive hydrodynamic equation based on quantum field theories.
References
- T. Hayata, Y. Hidaka, M. Hongo, and T. Noumi, Phys. Rev. D 92, 065008 (2015).
- M. Hongo, Annals of Physics, 383, 1 (2017).
- M. Hongo, K. Hattori, arXiv: 2005.10239 [hep-th].