コーヒーミーティング過去ログ

2021-03-26

Hunting the standard candles in their own nest

マリア・ジョヴァンナ・ダイノッティ (NAOJ/Space Science Institute)

I will introduce briefly the concept of Standard candles and how Gamma-Ray Bursts can be used as standardized candles through a new three-dimensional relation among important features of GRBs and how the kilonovae events associated with GRBs form a plane can naturally form a different plane with a much smaller dispersion around the plane.

2021-03-19

Sensitivity and robustness of chemical reaction network systems

岡田 崇 (数理創造プログラム 上級研究員)

In living cellls, many reactions occur and form complex networks, such as metabolic networks. I will discuss how biological functions can emerge from the complex network dynamics, from network topology perspectives.

2021-03-12

Recent progress in black hole information paradox

後藤 郁夏人 (数理創造プログラム 基礎科学特別研究員)

2021-02-26

Fermionic transport under gravity

Kazuya Mameda (QHP)

I will briefly talk about transport phenomena induced by a background gravitational field.

2021-02-19

information scrambling is growth of wormwhole

野﨑 雅弘 (数理創造プログラム 基礎科学特別研究員)

I will explain what is the information scrambling, why it is important, and how it is related to the growth of wormhole.

2021-02-12

Active and Passive Phase Separation in a Lattice Model

足立 景亮 (数理創造プログラム 基礎科学特別研究員 / 理化学研究所 生命機能科学研究センター (BDR) 生体非平衡物理学理研白眉研究チーム 基礎科学特別研究員)

Phase separation is spontaneous segregation into high-density and low-density phases, observed in a variety of systems, e.g., alloy, polymer solution, and intracellular cytoplasm. In this talk, I will review the phase separation phenomena and introduce a model that connects the equilibrium phase separation to another class of separation driven by motility.

2021-02-05

Toward the standard model of elementary particles -- a brief history in 15 min. --

初田 哲男 (数理創造プログラム プログラムディレクター)

I will make a very brief overview on the path toward the modern understanding on the law(s) of fundamental particles.

2021-01-29

Mathematical analysis to smoldering combustion

小林 俊介 (数理創造プログラム 客員研究員 / 京都大学 大学院理学研究科 附属サイエンス連携探索センター (SACRA) 特定助教)

Recently, experimental and theoretical study on near-floor flame spreading along a thin solid have been reported. In this talk, I would like to introduce a mathematical model for flame/smoldering fronts, which is equivalent to the Kuramoto--Sivashinsky equation in a scale.

2021-01-22

Is a vacuum empty?

多田 司 (数理創造プログラム コーディネーター / 理化学研究所 仁科加速器科学研究センター (RNC) 量子ハドロン物理学研究室 副主任研究員)

Usually, a vacuum is a word associated with nothingness. The modern concept of the vacuum, however, exhibits rich and beautiful structure. I will explain the vacuum is the very foundation of our universe.

2021-01-15

Revealing the Neutron Star Properties from Gravitional Wave

黄 永嘉 (数理創造プログラム 国際プログラム・アソシエイト / Ph.D. Student, University of Science and Technology of China, China)

The gravitational wave detection brings us new opportunities to measure the neutron stars' properties. In this talk, I will briefly introduce the process of binary neutron star merger and what we could know from gravitational wave.

2020-12-18

Elucidation of Physics inside Neutron Stars from their Cooling Observations

土肥 明 (数理創造プログラム 大学院生リサーチ・アソシエイト / 九州大学 大学院理学府 物理学専攻 博士課程)

The densest stars in universe, neutron stars (NSs), cool down due to neutrino losses after their formation. Firstly, I will review about the NS cooling and the representative observations such as Cassiopeia A and possibly NS in supernova 1987A. NS cooling curves are affected by various uncertain physics which may work in NSs. One of the examples is nucleon superfluidty. I will introduce how the neutrons superfluidity can be specified by cooling observations. Another is modified-gravity or beyond-general-relativistic effect. If time is allowed, I also present the possibility to test the theory to describe gravity with use of cooling observations.

2020-12-11

Quasi-steady problem and maximal regularity

古川 賢 (数理創造プログラム 特別研究員 / 理化学研究所 開拓研究本部 (CPR) 三好予測科学研究室 特別研究員)

I will introduce a brief review of the theory of maximal regularity, and show application to quasi-steady partial differential equations of parabolic type.

2020-11-27

On the story of renormalization

菊地 健吾 (数理創造プログラム 基礎科学特別研究員)

2020-11-13

Recent progress in understanding the diversity of eukaryotes based on large scale sequence data-analyses

矢﨑 裕規 (数理創造プログラム 特別研究員)

Understanding the phylogenetic relationships of eukaryotes is one of the major research issues in evolutionary biology, since this is the backbone of all eukaryotic evolutionary studies. This research has the history of more than 300 years, and recent statistical analyses using large-scale sequence data has revealed significant progress. I would like to give an overview of the researches for elucidating the phylogenetic relationship of eukaryotes.

2020-11-06

(Re-)Overview of iTHEMS and some annoucements

初田 哲男 (数理創造プログラム プログラムディレクター)

2020-10-30

Single polymer chain model: bead spring model

横田 宏 (数理創造プログラム 特別研究員)

We frequently meet polymer in our life. For example, DNA in living cells or plastic bag made from polyethylene. In this talk, I will introduce the bead-spring model which is a theoretical model of polymer chain in polymer physics.

2020-10-23

Thomas-Fermi theory

後藤 ゆきみ (数理創造プログラム 基礎科学特別研究員)

Although Thomas-Fermi (TF) theory is the original density functional theory, it cannot predict many properties of atoms. I will briefly review the mathematical point of view on the validity of TF theory.

2020-10-16

Toward classification of algebraic varieties

佐藤 謙太 (数理創造プログラム 客員研究員 / 九州大学 大学院数理学研究院 数学部門 助教)

An algebraic variety is a figure defined as the set of solutions of polynomial equations. In this talk, I will briefly explaine recent developments in the classification theory of algebraic varieties.

YouTube: Planetary lightning: Current State-of-the-art and outstanding questionsPublic

2020-10-09

Planetary lightning: Current State-of-the-art and outstanding questions

Jeremy Riousset (Florida Institute of Technology)

2020-09-25

Instanton Floer homology and TQFT

谷口 正樹 (数理創造プログラム 基礎科学特別研究員)

I would like to review how to construct a TQFT like extension of Donaldson invariant. The main reference is "S. K. Donaldson. Floer homology groups in Yang-Mills theory, Vol. 147 of Cambridge Tracts in Mathematics.".