Volume 373
Back to Newsletter List
Upcoming Events
Seminar
iTHEMS Theoretical Physics Seminar
Multi-strangeness matter from ab initio calculations
September 16 (Tue) 13:30 - 15:00, 2025
Hui Tong (Post-doctoral Fellow, Helmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, Germany)
Hypernuclei and hypernuclear matter connect nuclear structure in the strangeness sector with the astrophysics of neutron stars, where hyperons are expected to emerge at high densities and affect key astrophysical observables. We present the first ab initio calculations that simultaneously describe single- and double- hypernuclei from the light to medium-mass range, the equation of state for -stable hypernuclear matter, and neutron star properties. Despite the formidable complexity of quantum Monte Carlo (QMC) simulations with multiple baryonic degrees of freedom, by combining nuclear lattice effective field theory with a newly developed auxiliary-field QMC algorithm we achieve the first sign-problem free ab initio QMC simulations of hypernuclear systems containing arbitrary number of neutrons, protons, and hyperons, including all relevant two- and three-body interactions. This eliminates reliance on the symmetry-energy approximation, long used to interpolate between symmetric nuclear matter and pure neutron matter. Our unified calculations reproduce hyperon separation energies, yield a neutron star maximum mass consistent with observations, predict tidal deformabilities compatible with gravitational-wave measurements, and give a trace anomaly in line with Bayesian constraints. By bridging the physics of finite hypernuclei and infinite hypernuclear matter within a single ab initio framework, this work establishes a direct microscopic link between hypernuclear structure, dense matter composition, and the astrophysical properties of neutron stars.
References
- Hui Tong, Serdar Elhatisari, and Ulf-G. Meißner, Ab initio calculation of hyper-neutron matter, (2024), arXiv: 2405.01887
- Hui Tong, Serdar Elhatisari, and Ulf-G. Meißner, Hyper-neutron stars from an ab initio calculation, (2025), arXiv: 2502.14435
Venue: Seminar Room #359, 3F Main Research Building, RIKEN / via Zoom
Event Official Language: English
Seminar
DEEP-IN Seminar
Statistical Physics of In-Context Learning in Transformer
September 16 (Tue) 15:00 - 16:30, 2025
Haiping Huang (Professor, School of Physics, Sun Yat-sen University, China)
The pre-trained large model demonstrates the ability to learn from examples, that is, it can infer patterns and generalize from a small number of examples without retraining. How does this ability emerge? This report proposes a physical model mapping of the large model pre-training process, and finds that the training process corresponds to spin condensation, the unique energy ground state will determine the example generalization ability, and the diversity of training data is a key element in algorithm design. This study also reveals that the reasoning process of the large model may be fundamentally different from human thinking.
References
- Yuhao Li, Ruoran Bai, Haiping Huang, Spin glass model of in-context learning, Phys. Rev. E 112, L013301 (2025), doi: 10.1103/5l5m-4nk5, arXiv: 2408.02288
- Haiping Huang, Statistical Mechanics of Neural Networks, (2022), doi: 10.1007/978-981-16-7570-6
Venue: via Zoom
Event Official Language: English
Seminar
iTHEMS Biology Seminar
Cross-species transcriptome analysis using Gromov-Wasserstein optimal transport
September 18 (Thu) 13:00 - 14:00, 2025
Yuya Tokuta (Program-Specific Researcher, Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study (KUIAS))
Sequence homology underpins cross-species analysis but cannot identify evolutionarily distinct genes that play analogous regulatory roles. Furthermore, ethical restrictions on human experiments necessitate analytical frameworks that translate insights from other animals to humans. To address these challenges, we developed Species-OT, a cross-species transcriptome analysis framework based on Gromov-Wasserstein optimal transport, which quantitatively compares the geometry of transcriptome distributions. Given a pair of bulk or single-cell RNA-sequencing datasets, Species-OT returns a gene-to-gene correspondence capturing probabilistic alignments of regulatory roles, and a transcriptomic distance quantifying overall divergence. Applied pairwise, Species-OT yields a transcriptomic discrepancy array and a hierarchical clustering tree analogous to a phylogenetic tree. We validated Species-OT using bulk RNA-seq data from human, mouse, and macaque germ cell specification as well as scRNA-seq data from pluripotent stem cells of six mammalian species. Species-OT identified evolutionarily related and distinct gene correspondences including biologically unexplored candidates, while transcriptomic discrepancies recapitulated expected species relationships. This is joint work with T. Nakamura, K. Fujiwara, M. Imamura, M. Nagano, M. Saitou, Y. Imoto, and Y. Hiraoka.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Seminar
ComSHeL Seminar
Strategies for tuning unsupervised learning hyperparameters in the context of dimensionality reduction for multimodal omics data
September 18 (Thu) 14:00 - 15:00, 2025
Dorothy Ellis (Postdoctoral Researcher, Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS))
We are actively developing multi-omics winnowing in R (mowR), a non-negative matrix factorization (NMF)-based model that expands upon the functionality of joint graph-regularized single cell sparse non-negative matrix factorization (jrSiCKLSNMF) from Ellis et al. (2023). “Omics” data characterize the molecular components of a biological sample. Examples of omics modalities include transcriptomics (RNA), epigenomics (epigenetic modifications), metabolomics (metabolites), proteomics (proteins), and genomics (DNA). Multi-omics analysis involves the integration of two or more of these modalities, and omics data are often high-dimensional and sparse. Therefore, dimension reduction techniques are often required to extract interpretable information from these datasets.
NMF, one such dimension reduction technique, finds a low-dimensional approximation of M omics features by N observations data matrix X via the product of an M × D loadings matrix W and D × N activations matrix H, where the number of latent factors D << min(M, N ). The jrSiCKLSNMF model extends the basic NMF model by fitting a shared H across v ∈ {1, ..., V } omics count modalities. It also incorporates ridge regularization on H, graph regularization on feature matrix Wv in modality v, and sum-to-one L2 norm constraints on the rows of H. We extend jrSiCKLSNMF to mowR by implementing mini-batch updates (Serizel et al., 2016), modality-specific loss functions (e.g. Poisson K-L divergence for count modalities and Frobenius norm for Gaussian modalities), modality-specific activation matrices Hv and weights ωv on H to allow constraints on Wv , loss weights, LASSO regularization on H, and L2 norm constraints on Wv .
We also introduce a novel technique to tune hyperparameters for unsupervised data by combining the data thinning/count splitting techniques outlined in Neufeld et al. (2023, 2024) with Bayesian optimization as implemented in the R package ParBayesianOptimization from Wilson (2018). In this talk, we focus on mowR’s hyperparameter tuning strategy, highlighting its current limitations and strategies to overcome them.
Venue: via Zoom
Event Official Language: English
Seminar
iTHEMS Theoretical Physics Seminar
Lecture 1 on "Modular Structures in N=4 supersymmetric Yang-Mills theory"
September 18 (Thu) 14:30 - 17:30, 2025
Daniele Dorigoni (Associate Professor, University of Durham, UK)
In this lecture series we present recent results in the study of exact correlation functions of half-BPS operators in N=4 supersymmetric Yang-Mills theory (SYM) averaged over the space-time insertion points. After presenting some basic properties of 1/2-BPS operators in N=4 SYM, we review how these integrated correlation functions can be obtained from a matrix model formulation of the N=4 path-integral. We then move to present two different integrated correlation functions of four superconformal primary operators of the stress-tensor multiplet which are holographically related to scattering amplitudes of 4-gravitons in type IIB superstring theory on an AdS_5 x S^5 background. We derive exact expressions both in the number of colours N, as well as in the complexified Yang-Mills coupling \tau. A key player in our discussion is electro-magnetic duality of N=4 SYM which provides strong constraints on the coupling dependence of such observables which, in particular, have to be real-analytic modular invariant functions of \tau. We then discuss the large-N fixed-\tau limit to show how these results can be interpreted on the dual stringy side. We also present some details on how these integrated correlator can be used to supplement the standard bootstrap approach leading to exciting coupling dependent bounds on the anomalous dimensions of non-protected operators in N=4 SYM, such as the Konishi operator. Lastly, we discuss an integrated correlation function involving two superconformal primary operators in the stress tensor multiplet in the presence of a half-BPS line defect operator, such as a Wilson line. Electro-magnetic duality is again fundamental in understanding the exact dependence from the coupling constant \tau. [OPTIONAL: If time and energy permit, I can also present some new results regarding integrated correlation functions of two light operators, dual to gravitons on the holographic side, and heavy giant graviton operators, dual to D3 branes extended on the background geometry]
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Seminar
iTHEMS Theoretical Physics Seminar
Lecture 2 on "Modular Structures in N=4 supersymmetric Yang-Mills theory"
September 19 (Fri) 14:30 - 17:30, 2025
Daniele Dorigoni (Associate Professor, University of Durham, UK)
In this lecture series we present recent results in the study of exact correlation functions of half-BPS operators in N=4 supersymmetric Yang-Mills theory (SYM) averaged over the space-time insertion points. After presenting some basic properties of 1/2-BPS operators in N=4 SYM, we review how these integrated correlation functions can be obtained from a matrix model formulation of the N=4 path-integral. We then move to present two different integrated correlation functions of four superconformal primary operators of the stress-tensor multiplet which are holographically related to scattering amplitudes of 4-gravitons in type IIB superstring theory on an AdS_5 x S^5 background. We derive exact expressions both in the number of colours N, as well as in the complexified Yang-Mills coupling \tau. A key player in our discussion is electro-magnetic duality of N=4 SYM which provides strong constraints on the coupling dependence of such observables which, in particular, have to be real-analytic modular invariant functions of \tau. We then discuss the large-N fixed-\tau limit to show how these results can be interpreted on the dual stringy side. We also present some details on how these integrated correlator can be used to supplement the standard bootstrap approach leading to exciting coupling dependent bounds on the anomalous dimensions of non-protected operators in N=4 SYM, such as the Konishi operator. Lastly, we discuss an integrated correlation function involving two superconformal primary operators in the stress tensor multiplet in the presence of a half-BPS line defect operator, such as a Wilson line. Electro-magnetic duality is again fundamental in understanding the exact dependence from the coupling constant \tau. [OPTIONAL: If time and energy permit, I can also present some new results regarding integrated correlation functions of two light operators, dual to gravitons on the holographic side, and heavy giant graviton operators, dual to D3 branes extended on the background geometry]
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Workshop
Japan-UK Workshop on Quantum Gravity
September 22 (Mon) - 26 (Fri) 2025
The universe at extremely early times is expected to be described by some theory of quantum gravity, although we still do not know precisely what quantum gravity actually is. In modern approaches to quantum gravity, the path integral point of view provides a fundamental framework towards answering this pressing question. However, an evaluation or even just a precise definition of the path-integral for a full-fledged quantum gravity is one of the most important open problems in modern theoretical physics.
With the "Japan-UK Workshop on Quantum Gravity" we want to bring together experts working on different aspects of the gravitational path-integral, such as
- Gravitational Scattering Amplitudes;
- Complex Geometries and Exact WKB;
- Quantum Cosmology;
- Exact Methods and Resurgence Analysis;
with the long-term goal of providing innovative ways of tackling modern problems in quantum gravity.
This workshop serves as the kick-off meeting for the Royal Society International Collaboration Award Grant "Re-PaInt: A Resurgence Path-Integral approach to quantum gravity" shared between Masazumi Honda at Riken iTHEMS and Daniele Dorigoni at Durham University, and aimed at fostering and developing an international partnership between the two institutes, as well as the greater Japan and UK theoretical physics communities working on quantum gravity, broadly intended.
Venue: 8F, Integrated Innovation Building (IIB), Kobe Campus, RIKEN
Event Official Language: English
Lecture
Supported by iTHEMS
8th QGG Intensive Lecture: Quantum reference frames and their applications in high-energy physics
September 24 (Wed) - 26 (Fri) 2025
Philipp Höhn (Assistant Professor, Qubits and Spacetime Unit, Okinawa Institute of Science and Technology Graduate University (OIST))
Quantum reference frames (QRFs) are a universal tool for dealing with symmetries in quantum systems. Roughly speaking, they are internal subsystems that transform in some non-trivial way under the symmetry group of interest and constitute the means for describing quantum systems from the inside in purely relational terms. QRFs are thus crucial for describing and extracting physics whenever no external reference frame for the symmetry group is available. This is in particular the case when the symmetries are gauge, as in gauge theory and gravity, where QRFs arise whenever building physical observables. The choice of internal QRF is typically non-unique, giving rise to a novel quantum form of covariance of physical properties under QRF transformations. This lecture series will explore this novel perspective in detail with a specific emphasis on applications in high-energy physics and gravity.
I will begin by introducing QRFs in mechanical setups and explain how they give rise to quantum structures of covariance that mimic those underlying special relativity. I will explain how this leads to subsystem relativity, the insight that different QRF decompose the total system in different ways into gauge-invariant subsystems, and how this leads to the QRF dependence of correlations, entropies, and thermal properties. We will then explore how relational dynamics in Hamiltonian constrained systems and the infamous "problem of time" can be addressed with clocks identified as temporal QRFs. In transitioning to the field theory setting, we will first consider hybrid scenarios, where QRFs are quantum mechanical, but the remaining degrees of freedom are quantum fields including gravitons. I will explain how this encompasses the recent discussion of "observers", generalized entropies, and gravitational von Neumann algebras by Witten et al. and how subsystem relativity leads to the conclusion that gravitational entanglement entropies are observer dependent. We will then discuss the classical analog of QRFs in gauge theory and gravity and how they can be used to build gauge-invariant relational observables and to describe local subsystems. This will connect with discussions on edge and soft modes in the literature, the former of which turn out to be QRFs as well. This has bearing on entanglement entropies in gauge theories, which I will describe on the lattice, providing a novel relational construction that overcomes the challenges faced by previous constructions, which yielded non-distillable contributions to the entropy and can be recovered as the intersection of "all QRF perspectives". Finally, I will describe how the classical discussion of dynamical reference frames can be used to build a manifestly gauge-invariant path integral formulation that opens up novel relational perspectives on effective actions and the renormalization group in gravitational contexts, which is typically plagued by a lack of manifest diffeomorphism-invariance. I will conclude with open questions and challenges in the field.
Program:
September 24
10:15 - 10:30 Registration and reception with coffee
10:30 - 12:00 Lecture 1
12:00 - 13:30 Lunch
13:30 - 15:00 Lecture 2
15:00 - 16:00 Coffee break
16:00 - 17:00 Lecture 3
17:10 - 18:10 Short talk session
18:20 - 21.00 Banquet
September 25
10:15 - 10:30 Morning discussion with coffee
10:30 - 12:00 Lecture 4
12:00 - 13:30 Lunch
13:30 - 15:00 Lecture 5
15:00 - 16:00 Coffee break
16:00 - 17:00 Lecture 6
17:10 - 18:10 Short talk session
September 26
10:15 - 10:30 Morning discussion with coffee
10:30 - 12:00 Lecture 7
12:00 - 13:30 Lunch
13:30 - 15:00 Lecture 8
15:00 - 16:00 Coffee break
16:00 - 17:00 Lecture 9 & Closing
Venue: #435-437, 4F, Main Research Building, RIKEN Wako Campus
Event Official Language: English
Seminar
ABBL-iTHEMS Joint Astro Seminar
Confined Circumstellar Material as a Dust Formation Site in Type II Supernovae
September 26 (Fri) 14:00 - 15:15, 2025
Yuki Takei (Program-Specific Researcher, Yukawa Institute for Theoretical Physics, Kyoto University)
Some massive stars undergo episodic mass loss shortly before core-collapse, producing dense circumstellar material (CSM) in their immediate surroundings. If the supernova (SN) ejecta strongly interacts with such CSM, narrow emission lines appear in the spectrum, classifying the event as Type IIn. In these cases, efficient radiative cooling forms a cold, dense shell (CDS), providing ideal conditions for dust condensation. Infrared observations of several SNe IIn have indeed confirmed newly formed dust. Recent time-domain surveys, however, suggest that compact and dense CSM, often termed “confined CSM”, is also present around a broader class of Type II SN progenitors with hydrogen-rich envelopes, beyond the traditional Type IIn subclass. This raises the possibility that dust formation in dense CSM is more common among core-collapse SNe than previously thought. In this talk, I will demonstrate that CDS formation occurs robustly across a wide parameter space for confined CSM using numerical simulations based on the open-source code CHIPS. I will also discuss the resulting dust mass and infrared emission, as well as the potential contribution of this process to the galactic dust budget.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Seminar
iTHEMS Theoretical Physics Seminar
Spontaneous quasiparticle creation in an analogue preheating experiment
September 30 (Tue) 10:00 - 12:00, 2025
Amaury Micheli (Postdoctoral Researcher, Division of Fundamental Mathematical Science, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS))
Abstract:
First, I will briefly outline the motivations and concepts that underpin the analogue gravity program. Next, I will provide a detailed description of a specific experiment designed to simulate various features of the cosmological reheating era. Finally, I will present our recent experimental results from this setup, where we demonstrated the parametric creation of quasiparticle pairs from the quantum vacuum, drawing an analogy with the preheating phase of reheating.
References
- Victor Gondret, Clothilde Lamirault, Rui Dias, Léa Camier, Amaury Micheli, Charlie Leprince, Quentin Marolleau, Jean-René Rullier, Scott Robertson, Denis Boiron, Christoph I. Westbrook, Observation of entanglement in a cold atom analog of cosmological preheating, arXiv: 2506.22024
- Victor Gondret, Rui Dias, Clothilde Lamirault, Léa Camier, Amaury Micheli, Charlie Leprince, Quentin Marolleau, Scott Robertson, Denis Boiron, Christoph I. Westbrook, Parametric pair production of collective excitations in a Bose-Einstein condensate, arXiv: 2508.01654
- Amaury Micheli, Scott Robertson, Dissipative parametric resonance in a modulated 1D Bose gas, arXiv: 2412.07506
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Seminar
ABBL-iTHEMS Joint Astro Seminar
A Continuous Galactic Line Source of Axions: The Remarkable Case of 23Na
September 30 (Tue) 14:00 - 15:00, 2025
Wick C. Haxton (Professor, Department of Physics, University of California, Berkeley, USA)
While it is unusual for odd-A nuclear species to be abundant in massive stars, 23Na is an interesting exception. Typically 0.1 solar masses of 23Na is synthesized during the carbon burning phase of supernova and ONeMg white dwarf progenitors, then maintained at approximately 10^9 K for periods ranging up to 60,000 years. Under these conditions, 23Na can pump the thermal energy of the star into escaping axions: the mechanism is the Boltzmann occupation of and subsequent axion emission from the 440 keV level. We develop a galactic model to show that the resulting flux of line axions is continuous, arising from hundreds of contributing sources. As they travel through the intra-galactic
magnetic field, some of these axions convert to detectable gamma rays. Consequently, future all-sky detectors like COSI will be able to set new limits on light axion-like particles. Other interesting aspects of these axions will be discussed.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Seminar
iTHEMS Theoretical Physics Seminar
What constitutes a gravitational wave in an expanding universe?
October 1 (Wed) 16:00 - 17:30, 2025
Yi-Zen Chu (Professor, Department of Physics, National Central University, Taiwan)
Our understanding of gravitational waves produced by isolated astrophysical systems is primarily based on gravitational perturbation theory off a flat spacetime background. This leads to the common identification of gravitational radiation with massless spin-2 waves. In this talk, I will argue that gravitational waves may no longer be solely "spin-2" in character once the background spacetime is our expanding universe instead. As a result of the mixing between gravitational and other degrees of freedom, scalar "spin-0" gravitational waves may exist during the radiation-dominated epoch of our universe; as well as during its current accelerated expansion phase -- provided the main driver is not the cosmological constant, but some extra "Dark Energy" field. Moreover, during the radiation-dominated era, spin-0 Cherenkov gravitational waves may even be generated if its material source were traveling faster than 1/\sqrt{3}.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Math Lecture
On ℓ_p-Vietoris-Rips complexes and blurred magnitude homology
October 7 (Tue) 11:00 - 13:00, 2025
Sergei O. Ivanov (Professor, Beijing Institute of Mathematical Sciences and Applications, China)
One of the main tools in topological data analysis is the notion of a persistence module. The most prominent example is the persistence module associated with the Vietoris–Rips complex of a finite metric space. On the other hand, the concept of magnitude has become increasingly well known in data analysis. Recently, Nina Otter introduced blurred magnitude homology, which is also a persistence module associated with a metric space. Govc and Hepworth showed that the magnitude of a finite metric space can be uniquely recovered from its blurred magnitude homology. For 1 ≤ p ≤ ∞, we define the ℓ_p-Vietoris–Rips complexes and the associated ℓ_p-persistent homology of metric spaces, and we study their fundamental properties. We show that for p=∞ this theory recovers the classical theory of Vietoris–Rips complexes and their persistent homology, while for p=1 it recovers the theory of blurred magnitude homology.
Venue: 3F 345-347 Seminar Room, Main Research Building, RIKEN Wako Campus / via Zoom
Event Official Language: English
Math Lecture
Bousfield-Kan completion as a codensity ∞-monad
October 3 (Fri) 15:00 - 17:00, 2025
Sergei O. Ivanov (Professor, Beijing Institute of Mathematical Sciences and Applications, China)
In this talk we recall the theory of codensity monads in ordinary category theory and tell about its generalization to the ∞-category setting. In particular, we show that the codensity ∞-monad of a full subcategory D of an ∞-category C satisfies a universal property: it is the terminal D-preserving ∞-monad. As an application, we show that the classical Bousfield-Kan R-completion functor can be described as the codensity ∞-monad of the full subcategory K(R) in the ∞-category of spaces spanned by the empty space and the products of Eilenberg-MacLane spaces of R-modules. As a corollary, we obtain that the Bousfield-Kan R-completion is the terminal K(R)-preserving ∞-monad.
Venue: Seminar Room #359, 3F Main Research Building, RIKEN / via Zoom
Event Official Language: English
Lecture
Lectures on General Probabilistic Theories: From Introduction to Research Participation
October 6 (Mon) - 9 (Thu) 2025
Hayato Arai (JSPS Research Fellow, Graduate School of Arts and Sciences, The University of Tokyo)
(The deadline of the registration is on Sep 30.)
100 years have passed since quantum mechanics was born. The mathematical model has been describing the physical world remarkably well. However, the foundations of this model still remain unclear. A comprehensive understanding of quantum theory, including its foundations, is becoming even more important in an era where the demands of realizing quantum information technologies pose significant theoretical and experimental challenges.
The framework of General Probabilistic Theories (GPTs) is a modern approach to the foundations of quantum theory. It deals with mathematical generalizations of both classical and quantum theories and has attracted increasing attention in recent years. Roughly speaking, research on GPTs has three major objectives: characterizing the models of classical and quantum theories, investigating the fundamental limits of physical and information-theoretic properties arising from operational requirements, and deepening our understanding of the mathematical structures underlying classical and quantum theories. The studies of GPTs have provided many new perspectives on these topics. However, at the same time, there remain many important open problems in the field. For this reason, more researchers are encouraged to enter and contribute to research on GPTs.
This intensive three-day lecture series is designed to provide researchers and graduate students with the essential knowledge necessary for research on GPTs, starting from an introduction to the subject. The lectures will cover the mathematical foundations, physical and information-theoretic concepts, and both the established results and future directions of GPT research. The 1st day will present the necessary mathematical structures, including convex geometry, positive cones, and the operational formulation of probabilistic models. The 2nd day will explore composite systems, information-theoretic quantities, symmetries, and Euclidean Jordan algebras. The 3rd day will survey key results on discrimination and communication tasks, the characterization of classical and quantum theories, and open problems that connect GPTs to quantum information science and beyond.
Note: The content of each lecture may extend into the next slot or be covered earlier, depending on the pace of discussion and participant questions.
The 1st day (6th Oct.): Mathematical Introduction to GPTs
Venue: Large Meeting Room, 2F, Wako Welfare & Conference Building
10:30-12:00 Lecture 1 (Introduction and Mathematics on Positive Cones)
12:00-13:30 Lunch time
13:30-15:00 Lecture 2 (Mathematics on Positive Cones)
15:00-15:30 Coffee break
15:30-17:00 Lecture 3 (Introduction to General Models and Relation between Operational Probability Theories)
The 2nd day (7th Oct.): Physical and Information Theoretical Concepts in GPTs
Venue: Large Meeting Room, 2F, Wako Welfare & Conference Building
10:30-12:00 Lecture 4 (Composite Systems in GPTs)
12:00-13:30 Lunch time
13:30-15:00 Lecture 5 (Information Quantities)
15:00-15:30 Coffee break
15:30-17:00 Lecture 6 (Dynamics, Symmetry, and Euclidean Jordan Algebras)
The 3rd day (8th Oct): Previous and Future Studies in GPTs
Venue: Meeting Room 435-437, 4F, Wako Main Research Building
10:30-12:00 Lecture 7 (Discrimination and Communication Tasks)
12:00-13:30 Lunch time
13:30-15:00 Lecture 8 (Characterization of Classical and Quantum Theories)
15:00-15:30 Coffee break
15:30-17:00 Lecture 9 (Other Topics, Open Problems, and Future Directions)
18:00- Dinner
The day of no lecture (9th Oct): Open Discussion and Q&A
Research discussions will take place between the lecturer and participants in areas such as the hallways on the 3rd and 4th floors of the Main Research Bldg, RIKEN Wako Campus.
Venue: Welfare and Conference Bldg. 2F Meeting Room, RIKEN Wako Campus / #435-437, Main Research Building, RIKEN Wako Campus
Event Official Language: English
Lecture
Lectures on Neutron Star Structure I
October 7 (Tue) 15:30 - 17:00, 2025
Mark Alford (Professor, Washington University in St. Louis, USA)
This is a lecture series by Prof. Mark Alford (Washington University in St. Louis) on the structure of neutron stars.
Oct. 7 (Tues), 15:30-17:00
Lecture I: Quark matter: the high-density frontier
The densest predicted state of matter is color-superconducting quark matter, which has some affinities to electrical superconductors, but a much richer phase structure because quarks come in many varieties. This form of matter may well exist in the core of compact stars, and the search for signatures of its presence is currently proceeding. I will review the nature of color-superconducting quark matter, and discuss some ideas for finding it in nature.
Oct. 14 (Tues), 15:30-17:00
Lecture II: Solid quark matter
I will review three ways in which quark matter can occur in a solid phase, where translational invariance is broken by some sort of crystalline structure. These include a color superconductor of the Fulde-Ferrell-Larkin-Ovchinnikov type, mixed phases that can arise at a nuclear/quark matter interface, and the strangelet crystal crust of a strange star.
Oct. 21 (Tues), 15:30-17:00
Lecture III: Dissipation in neutron star mergers
In a neutron star merger, nuclear matter experiences dramatic changes in temperature and density that happen in milliseconds. Mergers therefore probe dynamical properties that may help us uncover the phase structure of ultra-dense matter. I will describe some of the relevant material properties, focusing on flavor equilibration and its consequences such as bulk viscosity and damping of oscillations.
Oct. 28 (Tues), 15:30-17:00
Lecture IV: Neutrinos in dense matter: beyond modified Urca
Neutrino absorption and emission (the "Urca process") is an essential aspect of the formation and cooling of neutron stars and of the dynamics of neutron star mergers. In this talk I will describe the traditional way of calculating Urca rates, explain its shortfalls, and propose an alternative approach, the nucleon width approximation.
Venue: Seminar Room #359, 3F Main Research Building, RIKEN / via Zoom
Event Official Language: English
Colloquium
iTHEMS Colloquium
Why do we sleep? — The Role of Calcium and Phosphorylation in Sleep
October 10 (Fri) 15:30 - 17:00, 2025
Hiroki R. Ueda (Professor, Systems Pharmacology, Graduate School of Medicine, The University of Tokyo / Professor, Department of Systems Biology, Institute of Life Science, Kurume University)
Sleep remains one of greatest remaining mysteries. At the Sleep 2012 conference, we conceived a shift from the concept of “sleep substances” to “wake substances” such as calcium, suggesting that sleep homeostasis may arise from the integration of wake-related activity. Inspired by Dr. Setsuro Ebashi’s work on calcium signaling, we investigated calcium’s role in sleep regulation.
Using our Triple-CRISPR method (Sunagawa et al. 2016), we screened 25 genes related to calcium channels and pumps, revealing calcium as a brake on brain activity to promote sleep (Tatsuki et al. 2016). We also developed a tissue-clearing method CUBIC (Susaki et al. 2014; Tainaka et al. 2014) to visualize calcium’s effects on neural circuits. Further work showed that calcium-dependent enzymes, CaMKIIα/β kinases, act as calcium “memory” devices, with phosphorylation sites controlling sleep onset, duration, and termination (Tone et al. 2022). Other direct and indirect calcium-dependent phosphatases, Calcineurin and PP1 (sleep-promoting), and opposing kinases, PKA (wake-promoting), function as synaptic sleep switches (Wang et al. 2024).
We also identified the ryanodine receptor 1, a calcium channel, as a molecular target of inhalational anesthetics, hinting at shared pathways between anesthesia and sleep (Kanaya et al. 2025). Lastly, we proposed the WISE (Wake Inhibition Sleep Enhancement) mechanism, where quiet wakefulness suppresses and deep sleep strengthens synaptic connections, explaining links between sleep, depression, and antidepressant effects (Kinoshita et al. 2025).
Venue: Okochi Hall, 1F Laser Science Laboratory, RIKEN / via Zoom
Event Official Language: English
Paper of the Week
Week 2, September 2025
2025-09-11
Title: Heavy Field Effects on Inflationary Models in Light of ACT Data
Author: Shuntaro Aoki, Hajime Otsuka, Ryota Yanagita
arXiv: http://arxiv.org/abs/2509.06739v1
Title: From annular to toroidal knotoids and their bracket polynomials
Author: Ioannis Diamantis, Sofia Lambropoulou, Sonia Mahmoudi
arXiv: http://arxiv.org/abs/2509.05014v1
Title: Complexity of Quadratic Quantum Chaos
Author: Pallab Basu, Suman Das, Pratik Nandy
arXiv: http://arxiv.org/abs/2509.04075v1
Title: Stability analysis of two-fluid neutron stars featuring twin star and ultradense configurations
Author: Ankit Kumar, Hajime Sotani
arXiv: http://arxiv.org/abs/2509.03862v1
Title: Symmetries of equivariant Khovanov homology
Author: Mikhail Khovanov, Taketo Sano
arXiv: http://arxiv.org/abs/2509.03785v2
If you would like to cancel your subscription or change your email address,
please let us know via our contact form.
Copyright © iTHEMS, RIKEN. All rights reserved.
