Volume 305
Back to Newsletter List
Hot Topic
Event report: OIST x iTHEMS Workshop Series 1
2024-05-29
Renowned globally for its eminent scientists and cutting-edge infrastructures, RIKEN is the largest Japanese research organization in basic natural sciences. This distinction renders RIKEN a very attractive partner for OIST, a burgeoning research-oriented university. Cementing their collaborative endeavorsm, both institutes signed bilateral agreements including a MoU in 2020-2021, triggering and facilitating ambitious projects and fostering new collaborations. Among these, RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS) has emerged as a dynamic hub for active collaboration with OIST.
The workshop “OIST x iTHEMS Exploring the Mysteries of the Universe and Life - Series 1 | Cosmic ray and Life project” held at OIST on March 4-6 may be one best example of the type of brainstorming needed for addressing the most challenging questions.
To read more, please visit the related link.
Upcoming Events
Workshop
Recent Developments and Challenges in Topological Phases
June 3 (Mon) - 14 (Fri), 2024
Thanks to intensive research efforts, topology has been established as a fundamental concept in physics. For closed quantum systems, the classification of gapped topological phases has matured. Moreover, the importance of topology is not limited to isolated quantum systems. Recently, the topology of non-Hermitian Hamiltonians, which effectively describe systems with dissipation, has attracted much attention worldwide. This fascination is exemplified by topological phases and topological phenomena unique to non-Hermitian systems.
Against this background, the primary purpose of this workshop is to bring together researchers working on topological phases and to discuss (i) open questions in topological phases of closed quantum systems and (ii) the role of topology in open quantum systems and measurements.
Venue: Yukawa Institute for Theoretical Physics, Kyoto University
Event Official Language: English
Internal Meeting
JOINT N3AS - iTHEMS MEETING ON QUANTUM INFORMATION SCIENCE IN MULTI-MESSENGER ASTROPHYSICS
June 16 (Sun) - 18 (Tue), 2024
Seminar
iTHEMS Biology Seminar
Finding and understanding disease-causing genetic mutations
June 20 (Thu) at 16:00 - 17:00, 2024
Kojima Shohei (Special Postdoctoral Researcher, Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences (IMS))
Disease is caused by genetic factors and environmental factors. Genome-wide association study (GWAS) is a powerful method to find genetic factors associated with disease and human complex traits. One conceptual finding GWAS revealed is that many common diseases are caused by a combination of multiple genetic factors (polygenic), rather than a single causal mutation (monogenic). I have been working on finding genetic factors causing polygenic diseases by developing software that accurately finds sequence insertions and deletions from human population-scale sequencing datasets. In this talk, first, I will introduce some examples of disease-causing variants we recently discovered. Next I will also introduce my current research theme aiming to untangle how multiple genetic factors coordinately change cellular homeostasis, which I would like to have a collaboration with mathematical scientists.
Venue: Hybrid Format (3F #359 and Zoom), Main Research Building, RIKEN
Event Official Language: English
Seminar
iTHEMS Theoretical Physics Seminar
Magnonic spin current and shot noise in an itinerant Fermi gas
June 25 (Tue) at 13:30 - 15:00, 2024
Tingyu Zhang (Ph.D. Student, Department of Physics, Graduate School of Science, The University of Tokyo)
Spin transport phenomena at strongly-correlated interfaces play central roles in fundamental physics as well as spintronic applications. Although the spin-flip tunneling process, a key mechanism of spin transport, has been extensively studied in solid-state systems, its behavior in itinerant Fermi gases remains elusive.
In this regard we study the spin tunneling in a repulsively interacting ultracold Fermi gas based on the conventional quasiparticle tunneling process. we investigate the spin current induced by quasiparticle and spin-flip tunneling processes to see their bias dependence and interaction dependence. To anatomize spin carriers, we propose the detection of the spin current noise in the system. The Fano factor, which is defined as the ratio between the spin current and its noise can serve as a probe of elementary carriers of spin transport. The change of the Fano factor microscopically evinces a crossover from the quasiparticle transport to magnon transport in itinerant fermionic systems.
Venue: Hybrid Format (3F #359 and Zoom), Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Seminar
ABBL-iTHEMS Joint Astro Seminar
Dynamics of the very early universe: towards decoding its signature through primordial black hole abundance, dark matter, and gravitational waves.
July 5 (Fri) at 14:00 - 15:15, 2024
Riajul Haque (Postdoctoral Researcher, Department of Physics, Indian Institute of Technology, India)
I will start my talk with a brief overview of the standard reheating scenario. Then, I will discuss reheating through the evaporation of primordial black holes (PBHs) if one assumes PBHs are formed during the phase of reheating. Depending on their initial mass, abundance, and inflaton coupling with the radiation, I discuss two physically distinct possibilities of reheating the universe. In one possibility, the thermal bath is solely obtained from the decay of PBHs, while inflaton plays the role of the dominant energy component in the entire process. In the other possibility, PBHs dominate the total energy budget of the universe during evolution, and then their subsequent evaporation leads to a radiation-dominated universe. Furthermore, I will discuss the impact of both monochromatic and extended PBH mass functions and estimate the detailed parameter ranges for which those distinct reheating histories are realized. The evaporation of PBHs is also responsible for the production of DM. I will show its parameters in the background of reheating obtained from two chief systems in the early universe: the inflaton and the primordial black holes (PBHs). Then, I will move my discussion towards stable PBHs and discuss the effects of the parameters describing the epoch of reheating on the abundance of PBHs and the fraction of cold dark matter that can be composed of PBHs. If PBHs are produced due to the enhancement of the primordial scalar power spectrum on small scales, such primordial spectra also inevitably lead to strong amplification of the scalar-induced secondary gravitational waves (GWs) at higher frequencies. I will show how the recent detection of the stochastic gravitational wave background (SGWB) by the pulsar timing arrays (PTAs) has opened up the possibility of directly probing the very early universe through the scalar-induced secondary gravitational waves. Finally, I will conclude my talk by elaborating on the effect of quantum correction on the Hawking radiation for ultra-light PBHs and its observational signature through dark matter and gravitational waves.
Reference
- JHEP 09 (2023) 012; Phys.Rev.D 108 (2023) 6, 063523; Phys.Rev.D 109 (2024) 2, 023521; e-Print: 2403.16963; e-Print: 2404.16815.
Venue: via Zoom
Event Official Language: English
Others
What will Happen to iTHEMS⊗Masason Foundation Members?
August 2 (Fri) at 13:30 - 17:30, 2024
Venue: Seminar Room #359, 3F Main Research Building, RIKEN
Event Official Language: English
Paper of the Week
Week 5, May 2024
2024-05-30
Title: Two classes of Majorana neutrinos in the seesaw model
Author: Kazuo Fujikawa, Anca Tureanu
arXiv: http://arxiv.org/abs/2405.18702v1
Title: Actions of tensor categories on Kirchberg algebras
Author: Kan Kitamura
arXiv: http://arxiv.org/abs/2405.18429v1
Title: Complementarity for a Dynamical Black Hole
Author: Benjamin Concepcion, Yasunori Nomura, Kyle Ritchie, Samuel Weiss
arXiv: http://arxiv.org/abs/2405.15849v1
If you would like to cancel your subscription or change your email address,
please let us know via our contact form.
Copyright © iTHEMS, RIKEN. All rights reserved.