Volume 254

iTHEMS Weekly News Letter

Upcoming Events

Seminar

Quantum Matter Seminar

Quantum skyrmion lattices in Heisenberg ferromagnets

June 8 (Thu) at 17:00 - 18:15, 2023

Andreas Haller (Postdoctoral Researcher, Department of Physics and Materials Science, University of Luxembourg, Luxembourg)

Skyrmions are topological magnetic textures that can arise in noncentrosymmetric ferromagnetic materials. In most systems experimentally investigated to date, skyrmions emerge as classical objects. However, the discovery of skyrmions with nanometer length scales has sparked interest in their quantum properties. In this talk, I present our (numeric) results on the ground states of unfrustrated two-dimensional spin-1/2 Heisenberg lattices with Dzyaloshinskii-Moriya interactions, where we discovered a broad region in the zero-temperature phase diagram which hosts quantum skyrmion lattices. The simulations are based on an established variational optimization algorithm for matrix product states called density matrix renormalization group, which can faithfully approximate the ground states of small 2D clusters well beyond system sizes amenable for exact diagonalization. We argue that the quantum skyrmion lattice phase can be detected experimentally in the magnetization profile via local magnetic polarization measurements as well as in the spin structure factor via neutron scattering experiments. Deep in the skyrmion ordered phase, we find that the quantum skyrmion lattice state is only weakly entangled with ‘domain wall' entanglement between quasiparticles and environment localized near the boundary spins of the skyrmion. In this ordered regime of weakly entangled entities, large clusters of O(1000) sites can be simulated with great efficiency.

Field: condensed matter physics
Keywords: quantum spin systems, topology, density matrix renormalization group

Reference

  1. Andreas Haller, Solofo Groenendijk, Alireza Habibi, Andreas Michels, and Thomas L. Schmidt, Quantum skyrmion lattices in Heisenberg ferromagnets, Phys. Rev. Research 4, 043113 (2022), doi: 10.1103/PhysRevResearch.4.043113

Venue: via Zoom

Event Official Language: English

Seminar

iTHEMS Theoretical Physics Seminar

A Spin on Wave Dark Matter

June 15 (Thu) at 16:00 - 17:30, 2023

Mustafa Amin (Associate Professor, Department of Physics and Astronomy, Rice University, USA)

What can we learn about the intrinsic spin of ultralight dark matter field from astrophysical observations? That is, is dark matter is a scalar (spin 0), (spin 1) or tensor (spin 2) field? Using analytic calculations and 3+1 dimensional simulations, I will argue that the imprint of spin can be seen via (i) the initial density power spectrum, (ii) interference patterns in the density field inside dark matter halos, and through (iii) (polarized) solitons with macroscopic intrinsic spin. Based on features in the initial power spectrum, I will provide a bound on the dark matter mass > 10^(-18) eV for post-inflationary production. With increasing intrinsic spin, interference patterns in halos are reduced (and the inner shapes of halos modified) — which can be probed by lensing and dynamical heating of stars. Finally, after introducing polarized solitons, I will show that the time-scale of emergence of solitons (within halos) increases with increasing spin, and briefly discuss electromagnetic and gravitational wave signatures from such polarized solitons. Time-permitting, I will also mention connections to “spinor" Bose-Einstein condensates in the laboratory.

Venue: Hybrid Format (3F #359 and Zoom), Main Research Building, RIKEN

Event Official Language: English

Workshop

iTHEMS Science Outreach Workshop 2023

June 16 (Fri) - 18 (Sun), 2023

This year's meeting on "Outreach of RIKEN iTHEMS 2023@Sendai&Zoom" will be held from FRI June 16 to SUN June 18, as a face-to-face meeting at TOKYO ELECTRON House of Creativity of Tohoku Forum for Creativity in cooperation with iTHEMS SUURI-COOL (Sendai) using ZOOM for the necessary part as well.

Venue: TOKYO ELECTRON House of Creativity, Katahira Campus, Tohoku University / via Zoom

Event Official Language: Japanese

School

g-RIPS-Sendai 2023 thumbnail

Co-hosted by iTHEMS

g-RIPS-Sendai 2023

June 19 (Mon) - August 8 (Tue), 2023

The Research in Industrial Projects for Students (RIPS) program has been held at the Institute for Pure & Applied Mathematics (IPAM) of the University of California, Los Angeles. In 2018, the Advanced Institute for Materials Research (AIMR) at Tohoku University in Sendai launched the g-RIPS-Sendai program in collaboration with IPAM, targeting graduate-level students in mathematical science and related disciplines. Participants from the U.S. and Japan will work on cross-cultural teams on research projects designed by industrial partners. The projects are expected to be of great interest to the partners and offer stimulating challenges to students. For more information on this year's g-RIPS-Sendai 2023, please visit the program website at the related link.

Organizers:
Research Alliance Center for Mathematical Science (RACMaS), Tohoku University
Tohoku Forum for Creativity (TFC), Tohoku University
Advanced Institute for Materials Research (AIMR), Tohoku University

In cooperation with the following organizations:
RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS)
Institute for Pure & Applied Mathematics (IPAM), UCLA

Venue: Advanced Institute for Materials Research (AIMR), Tohoku University

Lecture

2nd QGG Intensive Lectures: Large gauge transformation and infrared regularity in the inflationary universe

June 19 (Mon) - 20 (Tue), 2023

Takahiro Tanaka (Professor, Division of Physics and Astronomy, Graduate School of Science, Kyoto University)

In this lecture we will start with the general framework to analyse the density perturbation in the inflationary universe. Then, we will introduce various infrared (IR) phenomena, including IR divergences, delta N formalism and consistency relation. The underlying symmetry originally coming from 3D diffeomorphism invariance leads us to a harmonic and unified understanding of these phenomena.

Program:

June 19
10:00 - 10:15 Registration and reception (with coffee)
10:15 - 11:45 Lecture 1
11:45 - 13:30 Lunch & coffee break
13:30 - 15:00 Lecture 2
15:00 - 16:00 Coffee break
16:00 - 17:30 Lecture 3
17:45 - 18:30 Short talk session

June 20
10:00 - 10:15 Reception (with coffee)
10:15 - 11:45 Lecture 4
11:45 - 13:30 Lunch & coffee break
13:30 - 15:00 Lecture 5
15:00 - 16:00 Coffee break
16:00 - 17:30 Lecture 6
17:30 - 18:30 Discussions & Closing

The lecture would consist of the following sections.

  1. Quantum field in curved spacetime
  2. General introduction to inflationary cosmology
  3. Cosmological perturbation during inflation
  4. Infrared Phenomena of Field Theory in the inflationary universe
  5. Large gauge transformation and infrared regularity

Venue: #535-537, 5F, Main Research Building, RIKEN

Event Official Language: English

Seminar

Information Theory SG Seminar

Introduction to statistical decision theory and Stein’s paradox

June 21 (Wed) at 14:00 - 15:00, 2023

Takeru Matsuda (Unit Leader, Statistical Mathematics Collaboration Unit, RIKEN Center for Brain Science (CBS))

Statistical decision theory is a general framework for discussing optimality of statistical procedures such as estimation, testing and prediction. In 1956, Charles Stein found a counter-intuitive phenomenon in estimation of the mean parameter of a multivariate normal distribution. He showed that a ``shrinkage estimator” attains better estimation accuracy (smaller mean-squared error) than the maximum likelihood estimator when the dimension is greater than or equal to three. This phenomenon is related to several mathematical fields such as Markov processes and potential theory. The idea of shrinkage estimation has been employed in many statistical methods such as regularization, empirical Bayes and model selection. In this talk, I will introduce the statistical decision theory and illustrate Stein’s paradox.

Venue: Hybrid Format (3F #359 and Zoom), Main Research Building, RIKEN

Event Official Language: English

Seminar

iTHEMS Math Seminar

Matrix estimation via singular value shrinkage

June 21 (Wed) at 15:30 - 16:30, 2023

Takeru Matsuda (Unit Leader, Statistical Mathematics Collaboration Unit, RIKEN Center for Brain Science (CBS))

In this talk, I will introduce recent studies on shrinkage estimation of matrices. First, we develop a superharmonic prior for matrices that shrinks singular values, which can be viewed as a natural generalization of Stein’s prior. This prior is motivated from the Efron–Morris estimator, which is an extension of the James–Stein estimator to matrices. The generalized Bayes estimator with respect to this prior is minimax and dominates MLE under the Frobenius loss. In particular, since it shrinks to the space of low-rank matrices, it attains large risk reduction when the unknown matrix is close to low-rank (e.g. reduced-rank regression). Next, we construct a theory of shrinkage estimation under the “matrix quadratic loss”, which is a matrix-valued loss function suitable for matrix estimation. A notion of “matrix superharmonicity” for matrix-variate functions is introduced and the generalized Bayes estimator with respect to a matrix superharmonic prior is shown to be minimax under the matrix quadratic loss. The matrix-variate improper t-priors are matrix superharmonic and this class includes the above generalization of Stein’s prior. Applications include matrix completion and nonparametric estimation.

Venue: Hybrid Format (3F #359 and Zoom), Main Research Building, RIKEN

Event Official Language: English

Seminar

iTHEMS Biology Seminar

The role of fluid dynamics in microbial ecology

June 22 (Thu) at 14:00 - 15:00, 2023

Douglas R. Brumley (Senior Lecturer, Applied Mathematics, University of Melbourne, Australia)

Bacterial motility, symbioses, and marine nutrient cycling unfold at the scale of individual microbes, and are inherently dynamic. In this talk, I will discuss the role that fluid flows play in shaping the ecology of microbes, both in the open ocean as well as around coral surfaces. In each case, I will demonstrate how iteratively combining video-microscopy, image processing and mathematical modelling can resolve features of microbial lifestyles that are difficult or impossible to see otherwise, and show how single-cell measurements can be connected to bulk processes at the population-level.

Venue: Hybrid Format (3F #359 and Zoom), Main Research Building, RIKEN

Event Official Language: English

Seminar

iTHEMS Theoretical Physics Seminar

The classical equations of motion of quantised gauge theories

June 23 (Fri) at 13:30 - 15:00, 2023

Tom Melia (Associate Professor, Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo)

The Einstein and Maxwell equations are the jewels in the crown of classical physics. But classical physics is only an approximation to nature, arising as a limit of the underlying quantum mechanical description. And in the case of both general relativity and electromagnetism, owing to their gauge theory nature, the full set of classical equations of motion are not guaranteed to follow from the quantum theory. The time-time and time-space components of the Einstein equations in GR and Gauss’ law in EM are enforced ‘by hand' in the quantisation procedure—a choice so as to make the classical-like states behave as per our classical belief.
But what if our universe was actually described by another classical-like state? For GR, the resulting modification of the Einstein equations can be packaged as the inclusion of an auxiliary energy-momentum tensor describing a ’shadow’ matter that adds no additional degrees of freedom to the theory. The homogeneous and isotropic background piece of this auxiliary matter contributes to expansion of the universe identical to cold dark matter, and the inhomogeneous components source curvature perturbations that grow linearly at linear order.

Venue: Hybrid Format (3F #359 and Zoom), Main Research Building, RIKEN

Event Official Language: English

Workshop

 thumbnail
 thumbnail

Supported by iTHEMS

6th Workshop on Virus Dynamics

July 4 (Tue) - 6 (Thu), 2023

Catherine Beauchemin (Deputy Program Director, iTHEMS)
Shingo Iwami (Professor, Graduate School of Science, Nagoya University)

The Workshop on Virus Dynamics is an international meeting held every 2 years. It brings virologists, immunologists, and microbiologists together with mathematical and computational modellers, bioinformaticians, bioengineers, virophysicists, and systems biologists to discuss current approaches and challenges in modelling and analyzing different aspects of virus and immune system dynamics, and associated vaccines and therapeutics. This 6th version of the workshop builds on the success of previous ones held in Frankfurt (2013), Toronto (2015), Heidelberg (2017), Paris (2019) and virtually (2021). It is supported by the Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program at RIKEN, by Nagoya University, and by the Japan Science and Technology Agency. Up-to-date information and registration is available via the website. The workshop is for in-person participation only (no virtual or hybrid option).

Venue: Noyori Conference Hall, Higashiyama Campus, Nagoya University

Event Official Language: English

Seminar

ABBL-iTHEMS Joint Astro Seminar

A dynamical model for IRAS 00500+6713: the remant of a type Iax supernova SN1181 hosting a double degenerate merger product WD J005311

July 7 (Fri) at 14:00 - 15:15, 2023

Takatoshi Ko (Ph.D. Student, Research Center for the Early Universe (RESCEU), The University of Tokyo)

Iras 00500+6713 is a bright nebula in the infrared, and X-ray observations show it consists of diffuse region and strong illuminated central region. In addition, optical spectral observations have recently revealed that fast wind with about 15,000 km/s is blowing from the massive white dwarf at the center. The properties of this nebula and white dwarf are very similar to those theoretically predicted by the binary white dwarf merger. In addition, its position on the celestial sphere and the extent make it a prime candidate for the remnant of SN 1181, a historical supernova. In this study, we propose that such a multilayered structure is formed by the collision between the remnant of SN 1181 and the stellar wind blowing from the central white dwarf, and succeeded in constructing a model that is consistent with the multi-wavelength observations. The results show that the progenitor of SN 1181 is a binary white dwarf with 1.3-1.9 solar mass and that their merger triggered an explosion that ejected mass with 0.2-0.6 solar mass to form the present object. The extent of the X-ray source concentrated in the center reveals that these winds began blowing within the last 30 years, and we will discuss this property as well.

Venue: Seminar Room #359, 3F Main Research Building, RIKEN / via Zoom

Event Official Language: English

Colloquium

iTHEMS Colloquium

The eyes have it: Influenza virus infection beyond the respiratory tract

July 11 (Tue) at 14:00 - 15:30, 2023

Jessica Belser (Research Microbiologist, Influenza Division, US Centers for Disease Control and Prevention (CDC), USA)

Influenza viruses are typically considered a respiratory pathogen, but are nonetheless capable of causing ocular complications in infected individuals and establishing a respiratory infection following ocular exposure. While both human and zoonotic influenza A viruses can replicate in ocular tissue and use the eye as a portal of entry, many H7 subtype viruses possess an ocular tropism in humans, though the molecular determinants that confer a non-respiratory tropism to a respiratory virus are poorly understood. In this presentation, I will discuss the establishment of several mammalian models to study ocular exposure and ocular tropism, ongoing investigations conducted in vitro and in vivo to elucidate properties associated with ocular-tropic viruses, and ways in which this information can improve efforts to identify, treat, and prevent human infection following ocular exposure to influenza viruses. Continued investigation of the capacity for respiratory viruses to gain entry to the respiratory tract and to cause ocular complications will improve understanding of how these pathogens cause human disease, regardless of the virus subtype or exposure route.

Venue: Okochi Hall, 1F Laser Science Laboratory, RIKEN / via Zoom

Event Official Language: English

Lecture

Higher Algebra in Geometry

July 31 (Mon) - August 10 (Thu), 2023

Hiro Lee Tanaka (Assistant Professor, Department of Mathematics, Texas State University, USA)

In these lectures, we will shed light on modern tools of higher algebra, where the traditional structures of algebra yield themselves only after controlled deformations. We will introduce infinity-categories, spectra, operads, and other standard tools of the last decade. The main applications will be to encode various higher-algebraic structures that inevitably arise in, and shed light on, geometry and topology. If time permits, we will illustrate how spectra naturally arise in geometric invariants.

The audience is imagined to consist of mathematicians interested in applications of infinity-categorical tools -- so a broad range of geometers (including topologists) and algebraists. From Lecture Two onward, I will assume basic knowledge of algebraic topology (e.g., the material of Hatcher) and homological algebra.

These lectures will be held between July 31 and August 10, each from 10:30 to 12:00, for a total of 8 lectures.

1st Week: Jul 31(mon), Aug 1(tue) - 3(thu)
- Introduction to ideas of higher algebra in geometry, for a general audience.
- Introduction to infinity-categories and to spectra.

2nd Week: Aug 7(mon) - 10(thu)
- Examples in geometry and topology, including invariants of Legendrian links and generating functions.
- Future Directions.

Profile:
Hiro Lee Tanaka is an assistant professor in the Department of Mathematics. After receiving his Ph.D. from Northwestern University and completing postdoctoral work at Harvard University, he conducted research at the Mathematical Sciences Research Institute in Berkeley, California, and at the Isaac Newton Institute in Cambridge, England. His research aims to fuse the higher structures in modern algebra with geometries emerging from both classical mechanics and supersymmetric field theories. Beyond research, Tanaka engages in efforts to create more equitable and supportive environments throughout the mathematics community.

References

  1. Jacob Lurie, Higher Topos Theory (PDF 4.8MB), doi: 10.1515/9781400830558
  2. Jacob Lurie, Higher Algebra (PDF 6.9MB)
  3. Kerodon - an online resource for homotopy-coherent mathematics
  4. Jacob Lurie, Hiro Lee Tanaka, Associative algebras and broken lines, arXiv: 1805.09587
  5. Jacob Lurie, On the Classification of Topological Field Theories, arXiv: 0905.0465
  6. Oleg Lazarev, Zachary Sylvan, Hiro Lee Tanaka, The infinity-category of stabilized Liouville sectors, arXiv: 2110.11754
  7. Araminta Amabel, Artem Kalmykov, Lukas Müller, Hiro Lee Tanaka, Lectures on Factorization Homology, Infinity-Categories, and Topological Field Theories, arXiv: 1907.00066
  8. David Ayala, John Francis, Hiro Lee Tanaka, Factorization homology of stratified spaces, arXiv: 1409.0848
  9. David Nadler, Hiro Lee Tanaka, A stable infinity-category of Lagrangian cobordisms, arXiv: 1109.4835
  10. David Gepner, An Introduction to Higher Categorical Algebra, arXiv: 1907.02904

Venue: #435-437, Main Research Building, RIKEN / via Zoom

Event Official Language: English

Person of the Week

Derek Beattie Inman thumbnail

Self-introduction: Derek Beattie Inman

2023-06-06

Hello! My name is Derek Inman, and I am a scientist at iTHEMS whose research is focused on cosmology. Our Universe contains a substantial amount of dark matter the behavior of which we broadly know, but the composition of which we don’t. I try to understand how different ideas for what dark matter is (particles? black holes? something else?) change how the Universe looks and evolves at various times and length scales. I am particularly interested in cosmological structure formation, which rapidly becomes a nonlinear problem and so I tend to use numerical simulations run on supercomputers to understand the relevant physics.

Paper of the Week

Week 2, June 2023

2023-06-08

Title: Nuclear mass predictions based on deep neural network and finite-range droplet model (2012)
Author: To Chung Yiu, Haozhao Liang, Jenny Lee
arXiv: http://arxiv.org/abs/2306.04171v1

Title: Finite-range effect in the two-dimensional density-induced BCS-BEC crossover
Author: Hikaru Sakakibara, Hiroyuki Tajima, Haozhao Liang
arXiv: http://arxiv.org/abs/2306.02127v1

Title: Quasimaps to quivers with potentials
Author: Yalong Cao, Gufang Zhao
arXiv: http://arxiv.org/abs/2306.01302v1

Title: Topological quadratic-node semimetal in a photonic microring lattice
Author: Zihe Gao, Haoqi Zhao, Tianwei Wu, Xilin Feng, Zhifeng Zhang, Xingdu Qiao, Ching-Kai Chiu, Liang Feng
Journal Reference: Nature Communications 14, 3206 (2023)
doi: https://doi.org/10.1038/s41467-023-38861-3

Title: The origin of MeV gamma-ray diffuse emission from the inner Galactic region
Author: Naomi Tsuji, Yoshiyuki Inoue, Hiroki Yoneda, Reshmi Mukherjee, Hirokazu Odaka
doi: https://doi.org/10.22323/1.417.0037
arXiv: http://arxiv.org/abs/2306.00290v1

If you would like to cancel your subscription or change your email address,
please let us know via our contact form.