Press Release
62 news
-
2019-08-02
Press ReleaseIs your Supercomputer Stumped? There May Be a Quantum Solution
The recent paper by Jason Chang* (iTHEMS/UCB/LBNL), Shigetoshi Sota* (R-CCS) and their collaborators in US, "Quantum annealing for systems of polynomial equations" (Nature Scientific Reports, 9 (2019) 10258), was press-released on Aug.1, 2019 with a headline - Is your Supercomputer Stumped? There May Be a Quantum Solution - (*) Both Jason and Shigetoshi are members of the iTHEMS QCoIn Working Group.
-
2019-04-11
Press ReleaseObservation of Quantized Heating Rate in Ultracold Topological Matter
An international collaboration of researchers from University of Hamburg, Université libre de Bruxelles, and RIKEN iTHEMS observed quantized heating rate, demonstrating a novel universal probe for topological states of matter. The experiment was performed using a gas of ultracold potassium atoms. The researchers looked for the difference in heating rate upong "shaking" the system clock-wise and counter-clock-wise, and confirmed that this different is quantized to the value of the "Chern number" of the system, a topological invariant characterizing a two-dimensional system. The experiment took place in Hamburg, with theoretical collaborations from theorists in Bruxelles and RIKEN iTHEMS.
-
2019-04-03
Press ReleaseResearchers pinpoint origin of photons in mysterious gamma-ray bursts
Scientists from the RIKEN Cluster for Pioneering Research and collaborators have used simulations to show that the photons emitted by long gamma-ray bursts—one of the most energetic events to take place in the universe—originate in the photosphere—the visible portion of the “relativistic jet” that is emitted by exploding stars.
-
2019-02-21
Press ReleaseNon-sinusoidal Waveform in Temperature-Compensated Circadian Oscillations
Shingo Gibo (Postdoctoral Researcher, iTHEMS) and Gen Kurosawa (Senior Research Scientist, iTHEMS) have published a press release.
-
2018-12-18
Press ReleaseMystery of coronae around supermassive black holes deepens
Researchers from RIKEN and JAXA have used observations from the ALMA radio observatory located in northern Chile and managed by an international consortium including the National Astronomical Observatory of Japan (NAOJ) to measure, for the first time, the strength of magnetic fields near two supermassive black holes at the centers of an important type of active galaxies. Surprisingly, the strengths of the magnetic fields do not appear sufficient to power the “coronae,” clouds of superheated plasma that are observed around the black holes at the centers of those galaxies.
-
2018-10-16
Press ReleaseThe First Telescope of a New Observatory for High-Energy Gamma-Ray Astronomy Makes its Debut
Several iTHEMS members are actively involved in a brand-new, cutting edge astronomical project, called the Cherenkov Telescope Array (CTA). CTA will be the foremost global observatory for very high-energy gamma-ray astronomy over the next decade and beyond and will be the first ground-based gamma-ray astronomy observatory open to the world-wide astronomical and particle physics communities. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. With its ability to cover an enormous range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. From iTHEMS, Susumu Inoue and Yoshiyuki Inoue in particular have been actively contributing to the science case studies of multi-messenger transient phenomena and supermassive black holes as members of the CTA Consortium. On Wednesday, 10 October 2018, more than 200 guests from around the world gathered on the northern array site of the CTA to celebrate the inauguration of the first prototype Large-Sized Telescope (LST). The telescope, named LST-1, is intended to become the first of four LSTs on the north site of the CTA Observatory, which is located on the existing site of the Instituto de Astrofisica de Canarias’ (IAC’s) Observatorio del Roque de los Muchachos located in the municipality of Villa de Garafia on the island of La Palma. The plan for the site also includes 15 Medium-Sized Telescopes (MSTs). The LSTs will expand the science reach to cosmological distances and fainter sources with soft energy spectra. Both the repositioning speed and the low energy threshold provided by the LSTs are critical for CTA studies of transient gamma-ray sources in our own Galaxy and for the study of active galactic nuclei and gamma-ray bursts at high redshift.
-
2018-09-11
Press ReleaseAn unstable isotope Technetium-98 (98Tc) could be synthesized by neutrinos emitted from supernova explosions
A joint research group consisting of Masaomi Ono, a Research Scientist at RIKEN, and others has theoretically predicted that an unstable isotope Technetium-98 (98Tc) could be synthesized by neutrinos emitted from supernova explosions. Supernovae are important events in the evolution of stars and galaxies, but the details of how the explosions occur are still unknown. This research found a method to investigate the role of electron anti-neutrinos in supernovae. By measuring the amount of 98Ru (an isotope of Ruthenium) in meteorites, it should be possible to estimate how much of its progenitor 98Tc was present in the material at the time when the Solar System formed. The amount of 98Tc in turn is sensitive to the characteristics, such as temperature, of electron anti-neutrinos in the supernova process; as well as to how much time passed between the supernova and the formation of the Solar System. (This work appeared in Physical Review Letters on Sept. 4, 2018.) Caption: We can estimate the age of heavy elements in the primordial Solar System by measuring the traces left in meteorites by specific radioactive nuclei synthesized in certain types of supernovae. Credit: NAOJ (National Astronomical Observatory of Japan)
-
2018-07-26
Press ReleaseDiffuse x-ray emission from the northern arc of loop I observed with suzaku
The research team, including Yoshiyuki Inoue (Senior Research Scientist, iTHEMS), have published a press release.
-
2018-07-20
Press ReleaseSpatial Distribution of the Milky Way Hot Gaseous Halo Constrained by Suzaku X-Ray Observations
The research team, including Yoshiyuki Inoue (Senior Research Scientist, iTHEMS), have published a press release.
-
2018-06-22
Press ReleaseModeling the functions of condensin in chromosome shaping and segregation
Former iTHES fellow, Yuji Sakai (Univ. Tokyo) together with Atsushi Mochizuki (iTHEMS), Masashi Tachikawa (iTHEMS), Tetsuya Hirano (RIKEN) and Kazuhisa Kinoshita (RIKEN) have published a paper and a press release. Immediately before a cell divides, chromosomal DNA in a eukaryotic cell is packaged into a discrete set of rod-shaped chromosomes. This process, known as mitotic chromosome assembly or condensation, secures the faithful segregation of genetic information into daughter cells. Central to this mechanistically complex process is a class of protein complexes known as condensins. However, how condensins support the assembly and segregation of mitotic chromosomes at a mechanistic level remains elusive. Here we construct a coarse-grained physical model of chromosomal DNA fibers and condensin molecules, and study how condensins work in the mitotic chromosome assembly using computer simulations. Our results show that two activities of condensins, formation of consecutive loops in chromosomal DNA fibers and inter-condensin attractions, are necessary for both the shaping and segregation of mitotic chromosomes, and balancing acts of these activities help to coordinate the efficient progress of the processes. Importantly, chromosome shaping and segregation in our results are strongly correlated, implying that they are controlled by the same underlying mechanism mediated by condensins.
-
2018-06-05
Press ReleaseNeutron Life from Supercomputer Simulations
Jason Chang (iTHEMS/LBNL) and his colleagues have enlisted powerful supercomputers to calculate a quantity known as the "nucleon axial coupling," – which is central to our understanding of a neutron’s lifetime – with an unprecedented precision. Their method offers a clear path to further improvements that may help to resolve the experimental discrepancy of the lifetime of neutrons as well as to learn about as-yet undiscovered physics. The paper was published was published online May 30 in the journal Nature.
-
2018-05-24
Press ReleaseUsing the K computer, scientists predict exotic “di-Omega” particle
Based on complex simulations of quantum chromodynamics performed using the K computer, one of the most powerful computers in the world, the HAL QCD Collaboration, made up of scientists from the RIKEN Nishina Center for Accelerator-based Science and the RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program, together with colleagues from a number of universities, have predicted a new type of “dibaryon”—a particle that contains six quarks instead of the usual three. Studying how these elements form could help scientists understand the interactions among elementary particles in extreme environments such as the interiors of neutron stars or the early universe moments after the Big Bang.
62 news